913 resultados para symmetrized Hamiltonian
Resumo:
Starting out with an anomaly free lagrangian formulation for chiral scalars, which includes a Wess-Zumino term (to cancel the anomaly), we formulate the corresponding hamiltonian problem. Then we use the (quantum) Siegel invariance to choose a particular solution, which turns out to coincide with the one obtained by Floreanini and Jackiw. © 1988.
Resumo:
The aim of this paper is to find an odd homoclinic orbit for a class of reversible Hamiltonian systems. The proof is variational and it employs a version of the concentration compactness principle of P. L. Lions in a lemma due to Struwe.
Resumo:
This thesis describes modelling tools and methods suited for complex systems (systems that typically are represented by a plurality of models). The basic idea is that all models representing the system should be linked by well-defined model operations in order to build a structured repository of information, a hierarchy of models. The port-Hamiltonian framework is a good candidate to solve this kind of problems as it supports the most important model operations natively. The thesis in particular addresses the problem of integrating distributed parameter systems in a model hierarchy, and shows two possible mechanisms to do that: a finite-element discretization in port-Hamiltonian form, and a structure-preserving model order reduction for discretized models obtainable from commercial finite-element packages.
Resumo:
A simple LCAO-MO for the hydrogen molecule cation is tested for eigenfunctionality and found to be flawed.
Resumo:
Let p: E —» JV be an arbitrary fibred manifold over a connected n-dimensional manifold N oriented by a volume form v = dx1^-...^dxn, and let pk: JkE → N be the bundle of K-jets of local sections of p, with projections Plk : JkE → JlE for every k ≥ 1
Resumo:
With the purpose of assessing the absorption coefficients of quantum dot solar cells, symmetry considerations are introduced into a Hamiltonian whose eigenvalues are empirical. In this way, the proper transformation from the Hamiltonian's diagonalized form to the form that relates it with Γ-point exact solutions through k.p envelope functions is built accounting for symmetry. Forbidden transitions are thus determined reducing the calculation burden and permitting a thoughtful discussion of the possible options for this transformation. The agreement of this model with the measured external quantum efficiency of a prototype solar cell is found to be excellent.
Resumo:
Involutivity of the Hamilton-Cartan equations of a second-order Lagrangian admitting a first-order Hamiltonian formalism
Resumo:
The Empiric k·p Hamiltonian method is usually applied to nanostructured semiconductors. In this paper, it is applied to a homogeneous semiconductor in order to check the adequacy of the method. In this case, the solutions of the diagonalized Hamiltonian, as well as the envelope functions, are plane waves. The procedure is applied to the GaAs and the interband absorption coefficients are calculated. They result in reasonable agreement with the measured values, further supporting the adequacy of the Empiric k·p Hamiltonian method.
Resumo:
The 8-dimensional Luttinger–Kohn–Pikus–Bir Hamiltonian matrix may be made up of four 4-dimensional blocks. A 4-band Hamiltonian is presented, obtained from making the non-diagonal blocks zero. The parameters of the new Hamiltonian are adjusted to fit the calculated effective masses and strained QD bandgap with the measured ones. The 4-dimensional Hamiltonian thus obtained agrees well with measured quantum efficiency of a quantum dot intermediate band solar cell and the full absorption spectrum can be calculated in about two hours using Mathematica© and a notebook. This is a hundred times faster than with the commonly-used 8-band Hamiltonian and is considered suitable for helping design engineers in the development of nanostructured solar cells.
Resumo:
Second-order Lagrangian densities admitting a first-order Hamiltonian formalism are studied; namely, i) necessary and sufficient conditions for the Poincaré–Cartan form of a second-order Lagrangian on an arbitrary fibred manifold p : E → N to be projectable onto J 1 E are explicitly determined; ii) for each of such Lagrangians, a first-order Hamiltonian formalism is developed and a new notion of regularity is introduced; iii) the variational problems of this class defined by regular Lagrangians areprovedtobeinvolutive
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.