923 resultados para sugar
Resumo:
A remarkable difference is observed in the rates of [3,3]-sigmatropic rearrangement of aryl 4,6-di-O-acetyl-2,3-dideoxy-D-erythro-hex-2-enopyranosides 1 and 2; the slower reactivity of the alpha-isomers is consistent with AM1 calculated transition state energetics of model systems.
Resumo:
Combining site of WBAI is extended and encompasses all the residues of blood group A-reactive trisaccharide [GalNAcalpha3Galbeta4Glc]. Though both of the fucose residues of A-pentasaccharide [GalNAcalpha(Fucalpha2)3Galbeta(Fucalpha3)4Glc] do not directly interact, with the combining site they thermodynamically favour the interaction of GalNAcalpha3Galbeta4Glc part of the molecule by imposing a sterically favourable orientation of the binding epitope viz. GalNAcalpha3Galbeta4Glc of the saccharide. Binding of sugars is driven by enthalpy and is devoid of heat capacity changes. This together with enthalpy-entropy compensation observed for these processes underscore the importance of water reorganization as being one of the principal determinant of protein-sugar interactions.
Resumo:
The life-history of Neurospora in nature has remained largely unknown. The present study attempts to remedy this. The following conclusions are based on observation of Neurospora on fire-scorched sugar cane in agricultural fields, and reconstruction experiments using a colour mutant to inoculate sugar cane burned in the laboratory. The fungus persists in soil as heat-resistant dormant ascospores. These are activated by a chemical(s) released into soil from the burnt substrate. The chief diffusible activator of ascospores is furfural and the germinating ascospores infect the scorched substrate. An invasive mycelium grows progressively upwards inside the juicy sugar cane and produces copious macroconidia externally through fire-induced openings formed in the plant tissue, or by the mechanical rupturing of the plant epidermal tissue by the mass of mycelium. The loose conidia are dispersed by wind and/or foraged by microfauna. It is suggested that the constant production of macroconidia, and their ready dispersal, serve a physiological role: to drain the substrate of minerals and soluble sugars, thereby creating nutritional conditions which stimulate sexual reproduction by the fungus. Sexual reproduction in the sugar-depleted cellulosic substrate occurs after macroconidiation has ceased totally and is favoured by the humid conditions prevailing during the monsoon rains. Profuse microconidiophores and protoperithecia are produced simultaneously in the pockets below the loosened epidermal tissue. Presumably protoperithecia are fertilized by microconidia which are possibly transmitted by nematodes active in the dead plant tissue. Mature perithecia release ascospores in situ which are passively liberated in the soil by the disintegration of the plant material and are, apparently, distributed by rain or irrigation water.
Resumo:
Sugars perform two vital functions in plants: as compatible solutes protecting the cell against osmotic stress and as mobile source of immediate and long-term energy requirement for growth and development. The two sugars that occur commonly in nature are sucrose and trehalose. Sucrose comprises one glucose and one fructose molecule; trehalose comprises two glucose molecules. Trehalose occurs in significant amounts in insects and fungi which greatly outnumber the plants. Surprisingly, in plants trehalose has been found in barely detectable amounts, if at all, raising the question `why did nature select sucrose instead of trehalose as the mobile energy source and as storage sugar for the plants'? Modelling revealed that when attached to the ribbon-shaped beta-1,4 glucan a trehalose molecule is shaped like a hook. This suggests that the beta-1,4 glucan chains with attached trehalose will fail to align to form inter-chain hydrogen bonds and coalesce into a cellulose microfibril, as a result of which in trehalose-accumulating plant cells, the cell wall will tend to become leaky. Thus in plants an evolutionary selection was made in favour of sucrose as the mobile energy source. Genetic engineering of plant cells for combating abiotic stresses through microbial trehalose-producing genes is fraught with risk of damage to plant cell walls.
Resumo:
We show that single walled carbon nanotubes (SWNTs) decorated with sugar functionalized poly (propyl ether imine) (PETIM) dendrimer is a very sensitive platform to quantitatively detect carbohydrate recognizing proteins, namely, lectins. The changes in electrical conductivity of SWNT in field effect transistor device due to carbohydrate-protein interactions form the basis of present study. The mannose sugar attached PETIM dendrimers undergo charge-transfer interactions with the SWNTs. The changes in the conductance of the dendritic sugar functionalized SWNT after addition of lectins in varying concentrations were found to follow the Langmuir type isotherm, giving the concanavalin A (Con A)-mannose affinity constant to be 8.5 x 10(6) M-1. The increase in the device conductance observed after adding 10 nM of Con A is same as after adding 20 mu M of a non-specific lectin peanut agglutinin, showing the high specificity of the Con A-mannose interactions. The specificity of sugar-lectin interactions was characterized further by observing significant shifts in Raman modes of the SWNTs. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4739793]
Resumo:
A Pummerer rearrangement of 2,3-dideoxy-3-alkyl/arylsulfinyl-arabino-hexopyranosides is reported. Treatment of sulfinyl-arabino-hexopyranoside derivatives, obtained through oxidation of the corresponding thio-derivatives, with trifluoroacetic anhydride (TFAA)/pyridine led to a facile formation of 2,3-dideoxy-3-alkyl/arylthio-hex-2-enopyranosides. Upon conversion of sugar vinyl sulfides to vinyl sulfoxides, conjugate addition reactions were conducted with alkoxides, to afford 3-deoxy-3-alkyl/arylsulfinyl pyranosides, in the manno-configuration exclusively. Whereas the conjugate addition reaction did not proceed with ether protecting groups, ester protecting groups and free hydroxyl groups in the sugar vinyl sulfoxide permitted the reaction. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify H-1/C-13 sugar spin systems in C-13 labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of C-13-H-1 groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.
Resumo:
Tiruvadi Sambasiva Venkatraman (TSV) was a plant breeder. In response to a call from Pundit Madan Mohan Malaviya, he made it his mission to develop high-yielding varieties of sugarcane for manufacturing sugar and making it available as a sweetening agent and an energy source for the malnourished children of India. Using Saccharum officinarum, then under cultivation in India, as the female parent, he artificially fertilized it with pollen from S. barberi, which grew wild in Coimbatore. After 4-5 recurrent backcrossings of S. officinarum Chi wild Sorghum spontaneum with S. officinarum as the female parent, TSV selected the `rare' interspecies hybrid cane varieties that resembled sugarcane and had approximately 2.5 cm thick juicy stems containing 16-18% sucrose - nearly 35 times more than what occurred in parent stocks. The hybrid canes matured quickly, were resistant to waterlogging, drought, and to the red-rot disease caused by Glomerella tucumanensis (Sordariomycetes: Glomerellaceae), and to the sereh-virus disease. Most importantly, they were amenable for propagation using stem cuttings. In recognition of the development of high-yielding sugarcane varieties, TSV was conferred the titles Rao Bahadur, Rao Sahib, and Sir by the British Government, and Padma Bhushan by the Republic of India. In the next few decades, consequent to TSV's work, India turned into the second largest sugar producer in the world, after Brazil. The hybrid sugarcane varieties developed are the foundational stocks for new sugarcane x bamboo hybrids, and for possible resistance to Puccinia megalocephala (Pucciniomycetes: Pucciniaceae) and Ustilago scitaminea (Ustilaginomycetes: Ustilaginaceae) using molecular techniques.
Resumo:
The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A novel, micro-shock wave responsive spermidine and dextran sulfate microparticle was developed. Almost 90% of the drug release was observed when the particles were exposed to micro-shock waves 5 times. Micro-shock waves served two purposes; of releasing the antibiotic from the system and perhaps disrupting the S. aureus biofilm in the skin infection model. A combination of shock waves with ciprofloxacin loaded microparticles could completely cure the S. aureus infection lesion in a diabetic mouse model. As a proof of concept insulin release was triggered using micro-shock waves in diabetic mice to reduce the blood glucose level. Insulin release could be triggered for at least 3 days by exposing subcutaneously injected insulin loaded particles.
Resumo:
The remarkable capability of nature to design and create excellent self-assembled nano-structures, especially in the biological world, has motivated chemists to mimic such systems with synthetic molecular and supramolecular systems. The hierarchically organized self-assembly of low molecular weight gelators (LMWGs) based on non-covalent interactions has been proven to be a useful tool in the development of well-defined nanostructures. Among these, the self-assembly of sugar-derived LMWGs has received immense attention because of their propensity to furnish biocompatible, hierarchical, supramolecular architectures that are macroscopically expressed in gel formation. This review sheds light on various aspects of sugar-derived LMWGs, uncovering their mechanisms of gelation, structural analysis, and tailorable properties, and their diverse applications such as stimuli-responsiveness, sensing, self-healing, environmental problems, and nano and biomaterials synthesis.
Resumo:
The discovery of microRNAs (miRNAs) has added a new dimension to the gene regulatory networks, making aberrantly expressed miRNAs as therapeutically important targets. Small molecules that can selectively target and modulate miRNA levels can thus serve as lead structures. Cationic cyclic peptides containing sugar amino acids represent a new class of small molecules that can target miRNA selectively. Upon treatment of these small molecules in breast cancer cell line, we profiled 96 therapeutically important miRNAs associated with cancer and observed that these peptides can selectively target paralogous miRNAs of the same seed family. This selective inhibition is of prime significance in cases when miRNAs of the same family have tissue-specific expression and perform different functions. During these conditions, targeting an entire miRNA family could lead to undesired adverse effects. The selective targeting is attributable to the difference in the three-dimensional structures of precursor miRNAs. Hence, the core structure of these peptides can be used as a scaffold for designing more potent inhibitors of miRNA maturation and hence function.
Resumo:
Se hizo un experimento para determinar el efecto de periodos de protección de plagas del follajes y frutos sobre el rendimiento y la ganancia neta en el cultivo de sandía para exportación. el experimento fue ubicado entre Nagarote y la paz centro, realizándose en los meses de febrero a abril de 1988, bajo riego. Para la protección del cultivo de las plagas se utilizó el insecticida prfenofos más riopcord (tambo 880 ecu). La dinámica poblacional mostró que las plagas que provocaron daños directo a los frutos como larvas de spodoptera spp. (lepidóptera: noctuidae) y heliothis ssp. (Lepidóptera: noctuidae), se acentuaron desde los 40 días después de la emergencia (DDE) de las plantas hasta el final de la cosecha. Las plagas que afectaron principalmente los follajes como lyriomiza spp. (Díptera: agromizidae) y aphis spp. Homóptera: aphididae) fueron más constante pero que a partir de los 38 DDE aumentaron sus poblaciones y provocaron un daño severo. El tratamiento que fue protegido desde la emergencia de la planta hasta la cosecha ocupo el primer lugar en fruto/mz, pero sin diferencias significativas entre los periodo de protección a excepción del testigo (sin protección). Así también se colocó en el primer lugar en el número de cajas con frutos exportables por su tamaño/mz, pero sin diferencia significativas con los periodos protegidos desde los 19 y 43 DDE hasta la cosecha. El periodo protegido en ninguna fase de cultivo y el periodo protegido desde la emergencia hasta los 43 DDE ocuparon el primer lugar en fruto no exportable por su tamaño demasiado pequeño. El tratamiento protegido desde los 19 DDE hasta la cosecha presento la mayor ganancia neta. Se presentó deformación de frutos entre 70 y80 %, no presentándose efecto de periodo de protección.