976 resultados para strong-field
Resumo:
Chlamydial infections are wide spread in koalas across their range and a solution to this debilitating disease has been sought for over a decade. Antibiotics are the currently accepted therapeutic measure, but are not an effective treatment due to the asymptomatic nature of some infections and a low efficacy rate. Thus, a vaccine would be an ideal way to address this infectious disease threat in the wild. Previous vaccine trials have used a three-dose regimen; however this is very difficult to apply in the field as it would require multiple capture events, which are stressful and invasive processes for the koala. In addition, it requires skilled koala handlers and a significant monetary investment. To overcome these challenges, in this study we utilized a polyphosphazine based poly I:C and a host defense peptide adjuvant combined with recombinant chlamydial major outer membrane protein (rMOMP) antigen to induce long lasting (54 weeks) cellular and humoral immunity in female koalas with a novel single immunizing dose. Immunized koalas produced a strong IgG response in plasma, as well as at mucosal sites. Moreover, they showed high levels of C. pecorum specific neutralizing antibodies in the plasma as well as vaginal and conjunctival secretions. Lastly, Chlamydia-specific lymphocyte proliferation responses were produced against both whole chlamydial elementary bodies and rMOMP protein, over the 12-month period. The results of this study suggest that a single dose rMOMP vaccine incorporating a poly I:C, host defense peptide and polyphosphazine adjuvant is able to stimulate both arms of the immune system in koalas, thereby providing an alternative to antibiotic treatment and/or a three-dose vaccine regime.
Resumo:
Quantitative estimates of the vertical structure and the spatial gradients of aerosol extinction coefficients have been made from airborne lidar measurements across the coastline into offshore oceanic regions along the east and west coasts of India. The vertical structure revealed the presence of strong, elevated aerosol layers in the altitude region of similar to 2-4 km, well above the atmospheric boundary layer (ABL). Horizontal gradients also showed a vertical structure, being sharp with the e(-1) scaling distance (D-0H) as small as similar to 150 km in the well-mixed regions mostly under the influence of local source effects. Above the ABL, where local effects are subdued, the gradients were much shallower (similar to 600-800 km); nevertheless, they were steep compared to the value of similar to 1500-2500 km reported for columnar AOD during winter. The gradients of these elevated layers were steeper over the east coast of India than over the west coast. Near-simultaneous radio sonde (Vaisala, Inc., Finland) ascents made over the northern Bay of Bengal showed the presence of convectively unstable regions, first from surface to similar to 750-1000 m and the other extending from 1750 to 3000 m separated by a stable region in between. These can act as a conduit for the advection of aerosols and favor the transport of continental aerosols in the higher levels (> 2 km) into the oceans without entering the marine boundary layer below. Large spatial gradient in aerosol optical and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of < 300 km (even at an altitude of 3 km) during summer and the premonsoon is of significance to the regional climate.
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months (Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term (30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (No) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of C02 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the WetPPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R^2 = 0.96), although it was <60% of the latter in both sandy and clayey soils. Anaerobically mineralisable N determined by waterlogged incubation of laboratory PPS-amended soil samples increased with increasing application rate of Wet PPS. Anaerobically minemlisable N from field-moist soil was well correlated with net N mineralised during 30 weeks of aerobic leached incubation (R^2 =0.90 sandy soil; R^2=0.93 clay soil). In the clay soil, the amount of mineral N produced from all the laboratory incubations was significantly correlated with field-measured nitrate-N in the soil profile (0-1.5 m depth) after 9 months of weed-free fallow following PPS application. In contrast, only anaerobic mineralisable N was significantly correlated with field nitrate-N in the sandy soil. Anaerobic incubation would, therefore, be suitable as a rapid practical test to estimate potentially mineralisable N following applications of different PPS materials in the field.
Resumo:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) is a common stored grain pest for which a wide range of suitable resources has been recorded. These beetles are facultatively fungivorous and their resource range may extend to fungi associated with non-grain resources (e.g. cotton seed) and other decaying plant matter. Little is known with respect to fungi in terms of resource location by these beetles in the field. We, therefore, conducted a series of experiments in laboratory arenas, glasshouse cages and the field to determine how beetles respond to grain resources in relation to cotton seed (together with its lint stubble and associated fungal flora). Results from the tests conducted in relatively small arenas and cages in the laboratory and glasshouse reveal that the responses of T. castaneum adults to food resources were twice as strong when walking as when flying (as measured by the proportion of the released beetles that were trapped). Also, a clear preference for linted cotton seeds was evident in walking T. castaneum, especially in small-scale arenas in the laboratory, where at least 60% of beetles released preferred linted cotton seeds over wheat and sorghum. Similarly, in cages (1 m3) they responded five times more strongly to linted cotton seed than to conventional grain resources. However, this pattern was not consistent with those obtained from field trapping over 20 m and the beetles did not show any particular preference to any of the resources tested above. Our results suggest a focus on walking beetles in trapping studies for population estimations and, for developing effective food-based trapping lures, the potential use of active volatiles from the fungi associated with linted cotton seed. © 2012 Elsevier Ltd.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
The lesser grain borer Rhyzopertha dominica (F.) is one of the most destructive insect pests of stored grain. This pest has been controlled successfully by fumigation with phosphine for the last several decades, though strong resistance to phosphine in many countries has raised concern about the long term usefulness of this control method. Previous genetic analysis of strongly resistant (SR) R. dominica from three widely geographically dispersed regions of Australia, Queensland (SRQLD), New South Wales (SRNSW) and South Australia (SRSA), revealed a resistance allele in the rph1 gene in all three strains. The present study confirms that the rph1 gene contributes to resistance in a fourth strongly resistant strain, SR2(QLD), also from Queensland. The previously described rph2 gene, which interacts synergistically with rph1 gene, confers strong resistance on SRQLD and SRNSW. We now provide strong circumstantial evidence that weak alleles of rph2, together with rph1, contribute to the strong resistance phenotypes of SRSA and SR2(QLD). To test the notion that rph1 and rph2 are solely responsible for the strong resistance phenotype of all resistant R. dominica, we created a strain derived by hybridising the four strongly resistant lines. Following repeated selection for survival at extreme rates of phosphine exposure, we found only slightly enhanced resistance. This suggests that a single sequence of genetic changes was responsible for the development of resistance in these insects.
Resumo:
A semiconductor with almost overlapping conduction bands b and c is considered. It is found that an attractive interaction leading to superconductivity can be induced between electrons in the conduction band b by a strong radiation field of monochromatic photons whose energy differs slightly from the band gap Ebc. The mechanism is the exchange of a photon and a phonon between the interacting electrons and the interaction is found to be proportional to the photon density.
Resumo:
Inheritance of resistance to phosphine fumigant was investigated in three field-collected strains of rusty grain beetle, Cryptolestes ferrugineus, Susceptible (S-strain), Weakly Resistant (Weak-R) and Strongly Resistant (Strong-R). The strains were purified for susceptibility, weak resistance and strong resistance to phosphine, respectively, to ensure homozygosity of resistance genotype. Crosses were established between S-strain × Weak-R, S-strain × Strong-R and Weak-R × Strong-R, and the dose mortality responses to phosphine of these strains and their F1, F2 and F1-backcross progeny were obtained. The fumigations were undertaken at 25 °C and 55% RH for 72 h. Weak-R and Strong-R showed resistance factors of 6.3 × and 505 × compared with S-strain at the LC50. Both weak and strong resistances were expressed as incompletely recessive with degrees of dominance of − 0.48 and − 0.43 at the LC50, respectively. Responses of F2 and F1-backcross progeny indicated the existence of one major gene in Weak-R, and at least two major genes in Strong-R, one of which was allelic with the major factor in Weak-R. Phenotypic variance analyses also estimated that the number of independently segregating genes conferring weak resistance was 1 (nE = 0.89) whereas there were two genes controlling strong resistance (nE = 1.2). The second gene, unique to Strong-R, interacted synergistically with the first gene to confer a very high level of resistance (~ 80 ×). Neither of the two major resistance genes was sex linked. Despite the similarity of the genetics of resistance to that previously observed in other pest species, a significant proportion (~ 15 to 30%) of F1 individuals survived at phosphine concentrations higher than predicted. Thus it is likely that additional dominant heritable factors, present in some individuals in the population, also influenced the resistance phenotype. Our results will help in understanding the process of selection for phosphine resistance in the field which will inform resistance management strategies. In addition, this information will provide a basis for the identification of the resistance genes.
Resumo:
Inheritance of resistance to phosphine fumigant was investigated in three field-collected strains of rusty grain beetle, Cryptolestes ferrugineus, Susceptible (S-strain), Weakly Resistant (Weak-R) and Strongly Resistant (Strong-R). The strains were purified for susceptibility, weak resistance and strong resistance to phosphine, respectively, to ensure homozygosity of resistance genotype. Crosses were established between S-strain × Weak-R, S-strain × Strong-R and Weak-R × Strong-R, and the dose mortality responses to phosphine of these strains and their F1, F2 and F1-backcross progeny were obtained. The fumigations were undertaken at 25 °C and 55% RH for 72 h. Weak-R and Strong-R showed resistance factors of 6.3 × and 505 × compared with S-strain at the LC50. Both weak and strong resistances were expressed as incompletely recessive with degrees of dominance of − 0.48 and − 0.43 at the LC50, respectively. Responses of F2 and F1-backcross progeny indicated the existence of one major gene in Weak-R, and at least two major genes in Strong-R, one of which was allelic with the major factor in Weak-R. Phenotypic variance analyses also estimated that the number of independently segregating genes conferring weak resistance was 1 (nE = 0.89) whereas there were two genes controlling strong resistance (nE = 1.2). The second gene, unique to Strong-R, interacted synergistically with the first gene to confer a very high level of resistance (~ 80 ×). Neither of the two major resistance genes was sex linked. Despite the similarity of the genetics of resistance to that previously observed in other pest species, a significant proportion (~ 15 to 30%) of F1 individuals survived at phosphine concentrations higher than predicted. Thus it is likely that additional dominant heritable factors, present in some individuals in the population, also influenced the resistance phenotype. Our results will help in understanding the process of selection for phosphine resistance in the field which will inform resistance management strategies. In addition, this information will provide a basis for the identification of the resistance genes.
Resumo:
Flight directionality of the rust-red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), was investigated under glasshouse and field conditions using sticky traps placed around dense experimental infestations of T. castaneum derived from field-collected samples. Although beetles of this species are known to fly quite readily, information on flight of beetles away from grain resources is limited. Under still glasshouse conditions, T. castaneum does not demonstrate strong horizontal or vertical trajectories in their initial flight behaviour. Flight was significantly directional in half of the replicates, but trapped beetles were only weakly concentrated around the mean direction of flight. In the field, by contrast, emigration of T. castaneum was strongly directional soon after flight initiation. The mean vector lengths were generally >0.5 which indicates that trapped beetles were strongly concentrated around the calculated mean flight direction. A circular-circular regression of mean flight vs. mean downwind direction suggested that flight direction was generally correlated with downwind direction. The mean height at which T. castaneum individuals initially flew was 115.4 ± 7.0 cm, with 58.3% of beetles caught no more than 1 m above the ground. The height at which beetles were trapped did not correlate with wind speed at the time of sampling, but the data do indicate that wind speed significantly affected T. castaneum flight initiation, because no beetles (or very few; no more than three) were trapped in the field when the mean wind speed was above 3 m s−1. This study thus demonstrates that wind speed and direction are both important aspects of flight behaviour of T. castaneum, and therefore of the spatio-temporal dynamics of this species.
Resumo:
Strong statistical evidence was found for differences in tolerance to natural infections of Tobacco streak virus (TSV) in sunflower hybrids. Data from 470 plots involving 23 different sunflower hybrids tested in multiple trials over 5 years in Australia were analysed. Using a Bayesian Hierarchical Logistic Regression model for analysis provided: (i) a rigorous method for investigating the relative effects of hybrid, seasonal rainfall and proximity to inoculum source on the incidence of severe TSV disease; (ii) a natural method for estimating the probability distributions of disease incidence in different hybrids under historical rainfall conditions; and (iii) a method for undertaking all pairwise comparisons of disease incidence between hybrids whilst controlling the familywise error rate without any drastic reduction in statistical power. The tolerance identified in field trials was effective against the main TSV strain associated with disease outbreaks, TSV-parthenium. Glasshouse tests indicate this tolerance to also be effective against the other TSV strain found in central Queensland, TSV-crownbeard. The use of tolerant germplasm is critical to minimise the risk of TSV epidemics in sunflower in this region. We found strong statistical evidence that rainfall during the early growing months of March and April had a negative effect on the incidence of severe infection with greatly reduced disease incidence in years that had high rainfall during this period.
Resumo:
Few data exist on direct greenhouse gas emissions from pen manure at beef feedlots. However, emission inventories attempt to account for these emissions. This study used a large chamber to isolate N2O and CH4 emissions from pen manure at two Australian commercial beef feedlots (stocking densities, 13-27 m(2) head) and related these emissions to a range of potential emission control factors, including masses and concentrations of volatile solids, NO3-, total N, NH4+, and organic C (OC), and additional factors such as total manure mass, cattle numbers, manure pack depth and density, temperature, and moisture content. Mean measured pen N2O emissions were 0.428 kg ha(-1) d(-1) (95% confidence interval [CI], 0.252-0.691) and 0.00405 kg ha(-1) d(-1) (95% CI, 0.00114-0.0110) for the northern and southern feedlots, respectively. Mean measured CH4 emission was 0.236 kg ha(-1) d(-1) (95% CI, 0.163-0.332) for the northern feedlot and 3.93 kg ha(-1) d(-1) (95% CI, 2.58-5.81) for the southern feedlot. Nitrous oxide emission increased with density, pH, temperature, and manure mass, whereas negative relationships were evident with moisture and OC. Strong relationships were not evident between N2O emission and masses or concentrations of NO3- or total N in the manure. This is significant because many standard inventory calculation protocols predict N2O emissions using the mass of N excreted by the animal.
Resumo:
We offer a procedure for evaluating the forces exerted by solitons of weak-coupling field theories on one another. We illustrate the procedure for the kink and the antikink of the two-dimensional φ4 theory. To do this, we construct analytically a static solution of the theory which can be interpreted as a kink and an antikink held a distance R apart. This leads to a definition of the potential energy U(R) for the pair, which is seen to have all the expected features. A corresponding evaluation is also done for U(R) between a soliton and an antisoliton of the sine-Gordon theory. When this U(R) is inserted into a nonrelativistic two-body problem for the pair, it yields a set of bound states and phase shifts. These are found to agree with exact results known for the sine-Gordon field theory in those regions where U(R) is expected to be significant, i.e., when R is large compared to the soliton size. We take this agreement as support that our procedure for defining U(R) yields the correct description of the dynamics of well-separated soliton pairs. An important feature of U(R) is that it seems to give strong intersoliton forces when the coupling constant is small, as distinct from the forces between the ordinary quanta of the theory. We suggest that this is a general feature of a class of theories, and emphasize the possible relevance of this feature to real strongly interacting hadrons.