172 resultados para stride
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.
Resumo:
Background: It is not yet established if the use of body weight support (BWS) systems for gait training is effective per se or if it is the combination of BWS and treadmill that improves the locomotion of individuals with gait impairment. This study investigated the effects of gait training on ground level with partial BWS in individuals with stroke during overground walking with no BWS.Methods: Twelve individuals with chronic stroke (53.17 +/- 7.52 years old) participated of a gait training program with BWS during overground walking, and were evaluated before and after the gait training period. In both evaluations, individuals were videotaped walking at a self-selected comfortable speed with no BWS. Measurements were obtained for mean walking speed, step length, stride length and speed, toe-clearance, durations of total double stance and single-limb support, and minimum and maximum foot, shank, thigh, and trunk segmental angles.Results: After gait training, individuals walked faster, with symmetrical steps, longer and faster strides, and increased toe-clearance. Also, they displayed increased rotation of foot, shank, thigh, and trunk segmental angles on both sides of the body. However, the duration of single-limb support remained asymmetrical between each side of the body after gait training.Conclusions: Gait training individuals with chronic stroke with BWS during overground walking improved walking in terms of temporal-spatial parameters and segmental angles. This training strategy might be adopted as a safe, specific and promising strategy for gait rehabilitation after stroke.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo do presente estudo foi investigar a percepção de crianças sobre distância na ausência de informação visual durante a locomoção. Ainda, se parâmetros biomecânicos relativos à locomoção são alterados durante a locomoção nas diferentes distâncias. Sete crianças na idade de 6 anos (GC) e 10 adultos (GA) foram convidados a andar vendados até alvos pré-estabelecidos. O expoente da função de potência e parâmetros biomecânicos (Ex.: duração da passada, proporção da passada e velocidade da passada) foram obtidos para cada grupo. Diferenças foram encontradas somente para os valores de distância produzida ao longo das distâncias testadas. Nenhum dos parâmetros biomecânicos diferiu entre GC e GA. Alterações quantitativas foram observadas nos parâmetros biomecânicos para distâncias curtas, embora o padrão do movimento não tenha sido alterado. Crianças desta faixa etária demonstram, em tarefas não usuais (Ex.: locomoção sem visão), adaptabilidade e capacidade de orientar-se no espaço utilizando apenas da sensibilidade háptica e provavelmente da imagem mental-construída da observação feita antes da realização da tarefa sem informação visual.
Resumo:
O andamento marcha característico de equinos da raça Mangalarga Marchador foi analisado em 104 animais, por meio de filmes de vídeo cassete (sistema VHS / PAL SECAM a 50 quadros por segundo). Cada animal foi observado no filme em velocidade normal por dez segundos, seguindo-se a análise quadro a quadro, estes apresentando vista lateral em movimento. Nesta fase foram registrados os momentos de apoio (mono, bi ou tripedais) bem como os momentos de suspensão, compreendendo duas sequências de oito momentos de apoio para cada animal. Dos 104 animais analisados, 98 mostraram oito variações de andamento, agrupados portanto de A a H. Os seis cavalos restantes mostraram variar em dois andamentos distintos, pertencendo assim a dois destes grupos. No primeiro conjunto com 98 animais, 32 apresentaram marcha ideal com sequência de apoios semelhante ao passo (grupo A), 34 animais mostraram andamento marchado com apoios monopedais posteriores, bipedais diagonais e laterais e tripedais anteriores (grupo B), 18 animais (grupo C) apresentaram andamento com apoios monopedais posteriores, bipedais diagonais e tripedais anteriores. O único andamento assimétrico pertenceu a cinco animais (grupo D). Três equinos apresentaram andamento saltado, com momento de suspensão na sequência de apoios (grupo E). Outros três animais apresentaram andamento baseado em apoios monopedais anteriores e posteriores e bipedais diagonais e laterais (grupo F). Andamento com apoios bipedais diagonais e laterais além de tripedais anteriores foi apresentado por dois equinos (grupo G). Um equino mostrou andamento com apoios bipedais diagonais e tripedais anteriores e posteriores (grupo H). Os outros seis animais com dois andamentos diferentes foram: um animal com andamento dos grupos A e C, um dos grupos A e D, dois dos grupos B e D, um dos grupos B e G e um dos grupos C e F. Os equinos da raça Mangalarga Marchador analisados neste trabalho mostraram-se possuidores de muitas variações de andamento em relação a marcha ideal, com alterações variando entre o trote e a andadura.
Resumo:
Introduction: To analyze the contribution of knee range of motion in walking of hemiplegic and diplegic children, considering their asymmetries. Material and method: Twelve children, 6 hemiplegics and 6 diplegics, from 7 to 12 years of age (9.5 ± 1.93) participated. Spasticity was assessed with the Ashworth's Modified Scale and the passive knee range of motion using an electrogoniometer. The task was to walk on an 8 m long walkway, using their preferred speed. Six attempts were made, three of which were on the right and three on the left sagittal planes. Results: The Mann-Whitney's U test found differences in the type of cerebral palsy for knee extension/hyperextension, for the relative angle of the knee at the load acceptance phase and for the knee range of motion during stride. The Wilcoxon's test revealed differences in hemibody for hemiplegics in the relative angle of the knee in acceptance of the load. Conclusions: Children with spastic cerebral palsy use compensation strategies between the lower limbs during walking. These strategies differed according to the type of cerebral palsy. The knee joint has an important function in those strategies, especially in the load acceptance and propulsion phases. © 2010 Elsevier España, S.L. y SERMEF. Todos los derechos reservados.
Resumo:
Purpose. Fatigue has been pointed as a fall risk in the elderly; however, the effects of prolonged gait on neuromuscular recruitment and on its pattern remain unknown. The aim of this study was to evaluate the effects of prolonged gait on neuromuscular recruitment levels and spatial-temporal gait variables. Methods. Eight healthy older women (age: 72.63 ± 6.55 years) walked at their preferred walking speed for twenty minutes on a treadmill. The Root Mean Square (RMS) from the vastus-lateralis, femoral biceps, tibialis anterior and lateral gastrocnemius muscles were determined at the first and last minute of the test during the moments of Heel Strike (HS), Terminal Stance and Terminal Swing (TS). In addition, coactivation in the knee and ankle as well as the stride cadence and length were measured in the test. The two RMS data (taken at the first and last minute) were compared by means of a Student's t-test. Results. Twenty minutes of walking induced fatigue in the subjects, as observed through an increase in RMS, notably during the HS and TS. Coactivation was also influenced by the prolonged gait test. The only gait phase where a risk of falling was enhanced was the HS. Nonetheless, subjects developed strategies to maintain a safe motor pattern, which was evidenced by an increase in stride length and a decrease in stride cadence. Conclusion. Tests lasting just twenty minutes on a treadmill were enough to induce fatigue in older adults. However, the level of fatigue was not enough to present a danger or fall risk to elderly individuals.
Resumo:
The aim of this study is to analyze dual-task effects on free and adaptive gait in Alzheimer's disease (AD) patients. Nineteen elders with AD participated in the study. A veteran neuropsychiatrist established the degree of AD in the sample. To determine dual-task effects on free and adaptive gait, patients performed five trials for each experimental condition: free and adaptive gait with and without a dual-task (regressive countdown). Spatial and temporal parameters were collected through an optoelectronic tridimensional system. The central stride was analyzed in free gait, and the steps immediately before (approaching phase) and during the obstacle crossing were analyzed in adaptive gait. Results indicated that AD patients walked more slowly during adaptive gait and free gait, using conservative strategies when confronted either with an obstacle or a secondary task. Furthermore, patients sought for stability to perform the tasks, particularly for adaptive gait with dual task, who used anticipatory and online adjustments to perform the task. Therefore, the increase of task complexity enhances cognitive load and risk of falls for AD patients. © 2012 Diego Orcioli-Silva et al.
Resumo:
Aim: The objective of the present study was to investigate the effect of a multimodal exercise intervention on frontal cognitive functions and kinematic gait parameters in patients with Alzheimer's disease. Methods: A sample of elderly patients with Alzheimer's disease (n=27) were assigned to a training group (n=14; aged 78.0±7.3years) and a control group (n=13; aged 77.1±7.4years). Multimodal exercise intervention includes motor activities and cognitive tasks simultaneously. The participants attended a 1-h session three times a week for 16weeks, and the control participants maintained their regular daily activities during the same period. The frontal cognitive functions were evaluated using the Frontal Assessment Battery, the Clock Drawing Test and the Symbol Search Subtest. The kinematic parameters of gait-cadence, stride length and stride speed were analyzed under two conditions: (i) free gait (single task); and (ii) gait with frontal cognitive task (walking and counting down from 20 - dual task). Results and discussion: The patients in the intervention group significantly increased the scores in frontal cognitive variables, Frontal Assessment Battery (P<0.001) and Symbol Search Subtest (P<0.001) after the 16-week period. The control group decreased the scores in the Clock Drawing Test (P=0.001) and increased the number of counting errors during the dual task (P=0.008) after the same period. Conclusion: The multimodal exercise intervention improved the frontal cognitive functions in patients with Alzheimer's disease. © 2012 Japan Geriatrics Society.
Resumo:
The main goal of this study was to investigate the influence of fear of fall and dual task on electromyographic and kinematic variability parameters on the gait of older females. Seventeen college students (21,47 ± 2,06 years old) and eighteen older female adults, both groups were physically fit and performed the gait test on three different conditions: walking at self-select speed, fear of fall and dual task. Electromyographic activity was measured on muscles of dominant leg and stride time was recorded. ANOVA two-way (p<0.05) was used. Electromyographic and kinematic gait variability were higher in older adult groups. However, for the comparison between gait conditions was only found significant difference for electromyographic variability. In line with this, the higher EMG and kinematic variability in older adults suggest that aging contributes for a higher motor challenge while walking, which may be predispose these individuals a higher risk of fall.
Resumo:
Objective: To determine the nervous activation, muscle strength, and biomechanical parameters that influence the cost of walking in older fallers and non-fallers. Methods: Maximal voluntary isokinetic torque was measured for the hip, knee and ankle of older women. Oxygen consumption was measured at rest and during 8 min of walking at self-selected speed. An additional minute of walking was performed to collect kinematic variables and the electromyographic signal of trunk, hip, knee, and ankle muscles, which was analyzed by the linear envelope. Cost of walking was calculated by subtracting resting body mass-normalized oxygen consumption from walking body mass-normalized oxygen consumption. Stride time and length, and ankle and hip range of motion were calculated from kinematic data. Findings: Older adult fallers had 28% lower knee extensor strength (p = 0.02), 47% lower internal oblique activation at heel contact (p = 0.03), and higher coactivation between tibialis anterior and gastrocnemius lateralis in each of the gait phases (p < 0.05). For fallers, a higher activation of gluteus maximus was associated with a higher cost of walking (r = 0.55, p < 0.05 and r = 0.71, p < 0.01, before and after heel contact, respectively). For non-fallers, an association between cost of walking and age (r = 0.60, p = 0.01) and cost of walking and thigh muscle coactivation (r = 0.53, p = 0.01) existed. Interpretation: This study demonstrated that there may be links between lower-extremity muscle weakness, muscle activation patterns, altered gait, and increased cost of walking in older fallers. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Aims: To evaluate the spatio-temporal variables of gait and the isometric muscle strength component of the ankle in patients with peripheral diabetic neuropathy. Also, verify the relationship between these variables and gait parameters. Methods: This study involved 25 diabetic peripheral neuropathy (DPN) participants (62.4 ± 8.36 years) and 27 age-matched healthy control individuals (64.48 ± 6.21 years). The assessment of the spatio-temporal parameters of gait was performed using an electronic baropodometry treadmill. Prior to the collection data, each participant was instructed to walk on the treadmill in her/his habitual self-selected speed. Results: Diabetic neuropathy group showed impairment of gait, with a smaller stride and length speed of the cycle, and increased duration of support time. Restricted dorsiflexion mobility and increased plantarflexion mobility were found, with a decrease in muscle strength of the dorsiflexors and plantiflexors. There was a significant relationship between plantiflexor muscle strength and the length and speed of the gait cycle. Also the muscle strengths of the plantiflexors and dorsiflexors, and the range of motion of dorsiflexion were predictors of gait performance. Conclusions: The ankle, muscle strength and ankle mobility variables could explain changes in gait speed and range of motion in patients with DPN, allowing for the application of preventive strategies. © 2012 Elsevier Ltd.
Resumo:
Background: Several factors may influence kinetic data measurements, including body conformation and body mass. In addition, gender differences in gait pattern have been observed in healthy humans. Therefore, the aim of this study was to compare the kinetic and temporospatial parameters in clinically healthy male and female cats using a pressure-sensitive walkway. Eighteen crossbreed adult cats were divided into two groups: G1 had ten male cats (nine neutered) aged from 1 to 4 years and body mass 3.1-6.8 kg; G2 had eight spayed female cats, aged from 1 to 6 years and body mass 3.3-4.75 kg. The data from the first five valid trials were collected for each cat. A trial was considered valid if the cat maintained a velocity between 0.54-0.74 m/s and acceleration from -0.20 to 0.20 m/s2. The peak vertical force (PVF), vertical impulse (VI), gait cycle time, stance time, swing time, stride length, and percentage body weight distribution among the four limbs were determined. In addition, the lengths of each forelimb and each hind limb were measured using a tape with the animal standing.Results: No significant differences were observed in each group in either the forelimbs or the hind limbs or between the left and right sides for any of the variables. For both groups, the PVF (%BW), the VI, and the percentage body weight distribution were higher at the forelimbs than the hind limbs. The stride length was larger for males; however, the other kinetic and temporospatial variables did not show any statistically significant differences between the groups. The lengths of the forelimbs and hind limbs were larger in the male cats. There was a significant moderate positive correlation between the stride length and the length of the limbs.Conclusions: In conclusion, the only difference observed between male and female cats was the stride length, and this was due to the greater body size of male cats. This difference did not affect other temporospatial or kinetics variables. © 2013 Verdugo et al.; licensee BioMed Central Ltd.