959 resultados para stochastic linear programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain Lagrangian dual. We show that robust duality holds whenever a robust moment cone is closed and convex. We then establish that the closed-convex robust moment cone condition in the case of constraint-wise uncertainty is in fact necessary and sufficient for robust duality. In other words, the robust moment cone is closed and convex if and only if robust duality holds for every linear objective function of the program. In the case of uncertain problems with affinely parameterized data uncertainty, we establish that robust duality is easily satisfied under a Slater type constraint qualification. Consequently, we derive robust forms of the Farkas lemma for systems of uncertain semi-infinite linear inequalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains in response to the growing governmental and consumer pressures. In real life, these supply chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing problem with emission concerns consider deterministic demand. In this paper, we study the inventory lot-sizing problem under non-stationary stochastic demand condition with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using a mixed integer linear programming model, this paper aims to investigate the effects of emission parameters, product- and system-related features on the supply chain performance through extensive computational experiments to cover general type business settings and not a specific scenario. Results show that cycle service level and demand coefficient of variation have significant impacts on total cost and emission irrespective of level of demand variability while the impact of product's demand pattern is significant only at lower level of demand variability. Finally, results also show that increasing value of carbon price reduces total cost, total emission and total inventory and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level and demand coefficient of variation. The analysis of results helps supply chain managers to take right decision in different demand and service level situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a general model to find the best allocation of a limited amount of supplements (extra minutes added to a timetable in order to reduce delays) on a set of interfering railway lines. By the best allocation, we mean the solution under which the weighted sum of expected delays is minimal. Our aim is to finely adjust an already existing and well-functioning timetable. We model this inherently stochastic optimization problem by using two-stage recourse models from stochastic programming, building upon earlier research from the literature. We present an improved formulation, allowing for an efficient solution using a standard algorithm for recourse models. We show that our model may be solved using any of the following theoretical frameworks: linear programming, stochastic programming and convex non-linear programming, and present a comparison of these approaches based on a real-life case study. Finally, we introduce stochastic dependency into the model, and present a statistical technique to estimate the model parameters from empirical data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work had as objective uses a model of lineal programming algorithm to optimize the use of the water in the District of Irrigation Baixo Acarau-CE proposing the best combination of crop types and areas established of 8,0 ha. The model aim maximize the net benefit of small farmer, incorporating the constraints in water and land availability, and constraints on the market. Considering crop types and the constraints, the study lead to the following conclusions: 1. The water availability in the District was not a limiting resources, while all available land was assigned in six of the seven cultivation plans analyzed. Furthermore, water availability was a restrictive factor as compared with land only when its availability was made to reduce to 60% of its actual value; 2. The combination of soursop and melon plants was the one that presented the largest net benefit, corresponding to R$ 5,250.00/ha/yr. The planting area for each crop made up to 50% of the area of the plot; 3. The plan that suggests the substitution of the cultivation of the soursop, since a decrease in annual net revenue of 5.87%. However, the plan that contemplates the simultaneous substitution of both soursop and melon produced the lowest liquid revenue, with reduction of 33.8%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Copyright © 2013 Springer Netherlands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A alta e crescente participação da energia eólica na matriz da produção traz grandes desafios aos operadores do sistema na gestão da rede e planeamento da produção. A incerteza associada à produção eólica condiciona os processos de escalonamento e despacho económico dos geradores térmicos, uma vez que a produção eólica efetiva pode ser muito diferente da produção prevista. O presente trabalho propõe duas metodologias de otimização do escalonamento de geradores térmicos baseadas em Programação Inteira Mista. Pretende-se encontrar soluções de escalonamento que minimizem as influências negativas da integração de energia eólica no sistema elétrico. Inicialmente o problema de escalonamento de geradores é formulado sem considerar a integração da energia eólica. Posteriormente foi considerada a penetração da energia eólica no sistema elétrico. No primeiro modelo proposto, o problema é formulado como um problema de otimização estocástico. Nesta formulação todos os cenários de produção eólica são levados em consideração no processo de otimização. No segundo modelo, o problema é formulado como um problema de otimização determinística. Nesta formulação, o escalonamento é feito para cada cenário de produção eólica e no fim determina-se a melhor solução por meio de indicadores de avaliação. Foram feitas simulações para diferentes níveis de reserva girante e os resultados obtidos mostraram que a alta participação da energia eólica na matriz da produção põe em causa a segurança e garantia de produção devido às características volátil e intermitente da produção eólica e para manter os mesmos níveis de segurança é preciso dispor no sistema de capacidade reserva girante suficiente capaz de compensar os erros de previsão.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Em Angola, apenas cerca de 30% da população tem acesso à energia elétrica, nível que decresce para valores inferiores a 10% em zonas rurais mais remotas. Este problema é agravado pelo facto de, na maioria dos casos, as infraestruturas existentes se encontrarem danificadas ou não acompanharem o desenvolvimento da região. Em particular na capital angolana, Luanda que, sendo a menor província de Angola, é a que regista atualmente a maior densidade populacional. Com uma população de cerca de 5 milhões de habitantes, não só há frequentemente problemas relacionados com a falha do fornecimento de energia elétrica como há ainda uma percentagem considerável de municípios onde a rede elétrica ainda nem sequer chegou. O governo de Angola, no seu esforço de crescimento e aproveitamento das suas enormes potencialidades, definiu o setor energético como um dos fatores críticos para o desenvolvimento sustentável do país, tendo assumido que este é um dos eixos prioritários até 2016. Existem objetivos claros quanto à reabilitação e expansão das infraestruturas do setor elétrico, aumentando a capacidade instalada do país e criando uma rede nacional adequada, com o intuito não só de melhorar a qualidade e fiabilidade da rede já existente como de a aumentar. Este trabalho de dissertação consistiu no levantamento de dados reais relativamente à rede de distribuição de energia elétrica de Luanda, na análise e planeamento do que é mais premente fazer relativamente à sua expansão, na escolha dos locais onde é viável localizar novas subestações, na modelação adequada do problema real e na proposta de uma solução ótima para a expansão da rede existente. Depois de analisados diferentes modelos matemáticos aplicados ao problema de expansão de redes de distribuição de energia elétrica encontrados na literatura, optou-se por um modelo de programação linear inteira mista (PLIM) que se mostrou adequado. Desenvolvido o modelo do problema, o mesmo foi resolvido por recurso a software de otimização Analytic Solver e CPLEX. Como forma de validação dos resultados obtidos, foi implementada a solução de rede no simulador PowerWorld 8.0 OPF, software este que permite a simulação da operação do sistema de trânsito de potências.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Investigação Operacional vem demonstrando ser uma valiosa ferramenta de gestão nos dias de hoje em que se vive num mercado cada vez mais competitivo. Através da Programação Linear pode-se reproduzir matematicamente um problema de maximização dos resultados ou minimização dos custos de produção com o propósito de auxiliar os gestores na tomada de decisão. A Programação Linear é um método matemático em que a função objectivo e as restrições assumem características lineares, com diversas aplicações no controlo de gestão, envolvendo normalmente problemas de utilização dos recursos disponíveis sujeitos a limitações impostas pelo processo produtivo ou pelo mercado. O objectivo geral deste trabalho é o de propor um modelo de Programação Linear para a programação ou produção e alocação de recursos necessários. Optimizar uma quantidade física designada função objectivo, tendo em conta um conjunto de condicionalismos endógenas às actividades em gestão. O objectivo crucial é dispor um modelo de apoio à gestão contribuindo assim para afectação eficiente de recursos escassos à disposição da unidade económica. Com o trabalho desenvolvido ficou patente a importância da abordagem quantitativa como recurso imprescindível de apoio ao processo de decisão. The operational research has proven to be a valuable management tool today we live in an increasingly competitive market. Through Linear Programming can be mathematically reproduce a problem of maximizing performance or minimizing production costs in order to assist managers in decision making. The Linear Programming is a mathematical method in which the objective function and constraints are linear features, with several applications in the control of management, usually involving problems of resource use are available subject to limitations imposed by the production process or the market. The overall objective of this work is to propose a Linear Programming model for scheduling or production and allocation of necessary resources. Optimizing a physical quantity called the objective function, given a set of endogenous constraints on management thus contributing to efficient allocation of scarce resources available to the economic unit. With the work has demonstrated the importance of the quantitative approach as essential resource to support the decision process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that if performance measures in a stochastic scheduling problem satisfy a set of so-called partial conservation laws (PCL), which extend previously studied generalized conservation laws (GCL), then the problem is solved optimally by a priority-index policy for an appropriate range of linear performance objectives, where the optimal indices are computed by a one-pass adaptive-greedy algorithm, based on Klimov's. We further apply this framework to investigate the indexability property of restless bandits introduced by Whittle, obtaining the following results: (1) we identify a class of restless bandits (PCL-indexable) which are indexable; membership in this class is tested through a single run of the adaptive-greedy algorithm, which also computes the Whittle indices when the test is positive; this provides a tractable sufficient condition for indexability; (2) we further indentify the class of GCL-indexable bandits, which includes classical bandits, having the property that they are indexable under any linear reward objective. The analysis is based on the so-called achievable region method, as the results follow fromnew linear programming formulations for the problems investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper aims to estimate a translog stochastic frontier production function in the analysis of a panel of 150 mixed Catalan farms in the period 1989-1993, in order to attempt to measure and explain variation in technical inefficiency scores with a one-stage approach. The model uses gross value added as the output aggregate measure. Total employment, fixed capital, current assets, specific costs and overhead costs are introduced into the model as inputs. Stochasticfrontier estimates are compared with those obtained using a linear programming method using a two-stage approach. The specification of the translog stochastic frontier model appears as an appropriate representation of the data, technical change was rejected and the technical inefficiency effects were statistically significant. The mean technical efficiency in the period analyzed was estimated to be 64.0%. Farm inefficiency levels were found significantly at 5%level and positively correlated with the number of economic size units.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Teollisuuden tuotannon eri prosessien optimointi on hyvin ajankohtainen aihe. Monet ohjausjärjestelmät ovat ajalta, jolloin tietokoneiden laskentateho oli hyvin vaatimaton nykyisiin verrattuna. Työssä esitetään tuotantoprosessi, joka sisältää teräksen leikkaussuunnitelman muodostamisongelman. Valuprosessi on yksi teräksen valmistuksen välivaiheita. Siinä sopivaan laatuun saatettu sula teräs valetaan linjastoon, jossa se jähmettyy ja leikataan aihioiksi. Myöhemmissä vaiheissa teräsaihioista muokataan pienempiä kokonaisuuksia, tehtaan lopputuotteita. Jatkuvavaletut aihiot voidaan leikata tilauskannasta riippuen monella eri tavalla. Tätä varten tarvitaan leikkaussuunnitelma, jonka muodostamiseksi on ratkaistava sekalukuoptimointiongelma. Sekalukuoptimointiongelmat ovat optimoinnin haastavin muoto. Niitä on tutkittu yksinkertaisempiin optimointiongelmiin nähden vähän. Nykyisten tietokoneiden laskentateho on kuitenkin mahdollistanut raskaampien ja monimutkaisempien optimointialgoritmien käytön ja kehittämisen. Työssä on käytetty ja esitetty eräs stokastisen optimoinnin menetelmä, differentiaalievoluutioalgoritmi. Tässä työssä esitetään teräksen leikkausoptimointialgoritmi. Kehitetty optimointimenetelmä toimii dynaamisesti tehdasympäristössä käyttäjien määrittelemien parametrien mukaisesti. Työ on osa Syncron Tech Oy:n Ovako Bar Oy Ab:lle toimittamaa ohjausjärjestelmää.