717 resultados para steel mill
Resumo:
The electrochemical behaviour of carbon steel coated with bis-[trimethoxysilylpropyl]amine (BTSPA) filled with silica nanoparticles in naturally aerated 0.1 mol L-1 NaCl solutions was evaluated. The coating was prepared by adding different concentrations of silica nanoparticles (100, 200, 300, 400 and 500 ppm) to the hydrolysis solution and then a second layer without silica nanoparticles was applied. The electrochemical behavior of the coated steel was evaluated by means of open-circuit potential (E-OC), electrochemical impedance spectroscopy (EIS) and polarization curves. Surface characterization was made by atomic force microscopy (AFM), and its hydrophobicity assessed by contact angle measurements. EIS diagrams have shown an improvement of the barrier properties of the silane layer with the silica addition, which was further improved on the bi-layer system. However, a dependence on the filler concentration was verified, and the best electrochemical response was obtained for samples modified with 300 ppm of silica nanoparticles. AFM images have shown a homogeneous distribution of the silica nanoparticles on the sample surface; however particles agglomeration was detected, which degraded the corrosion protection performance. The results were explained on the basis of the improvement of the barrier properties of the coating due to the filler addition and on the onset of defective regions on the more heavily filled coatings allowing easier electrolyte penetration. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The ideal conditions for the operation of tandem cold mills are connected to a set of references generated by models and used by dynamic regulators. Aiming at the optimization of the friction and yield stress coefficients an adaptation algorithm is proposed in this paper. Experimental results obtained from an industrial cold rolling mill are presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper presents two strategies for the upgrade of set-up generation systems for tandem cold mills. Even though these mills have been modernized mainly due to quality requests, their upgrades may be made intending to replace pre-calculated reference tables. In this case, Bryant and Osborn mill model without adaptive technique is proposed. As a more demanding modernization, Bland and Ford model including adaptation is recommended, although it requires a more complex computational hardware. Advantages and disadvantages of these two systems are compared and discussed and experimental results obtained from an industrial cold mill are shown.
Resumo:
Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the present work is to characterise the waste through chemical analysis, particle size distribution, X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy detection and thermal analysis. The waste sample is composed essentially of spherical particles and has a very small particle size and the majority of the identified elements were Fe, Zn, Ca, Cr, Mn, K and Si. The XRD has presented compounds such as ZnO, ZnFe2O4, Fe2O3, MnO, SiO2, FeFe2O4 and MnAl2O4. According to the thermal analysis results, up to 1000 degrees C the total weight loss was similar to 5%. The results of waste characterisation are very important to these further investigations.
Resumo:
Austenitic stainless steels cannot be conventionally nitrided at temperatures near 550 degrees C due to the intense precipitation of chromium nitrides in the diffusion zone. The precipitation of chro-mium nitrides increases the hardness but severely impairs corrosion resistance. Plasma nitriding allows introducing nitrogen in the steel at temperatures below 450 degrees C, forming pre-dominantly expanded austenite (gamma(N)), with a crystalline structure best represented by a special triclin-ic lattice, with a very high nitrogen atomic concentration promoting high compressive residual stresses at the surface, increasing substrate hardness from 4 GPa up to 14 GPa on the nitrided case.
Resumo:
This work studied the radiation resistance of Listeria monocytogenes and Salmonella species and the effect of irradiation on leaf flavonoid content and sensory acceptability of minimally processed arugula. Immersion in ozone-treated water reduced the analyzed microorganisms by 1 log. L. monocytogenes and Salmonella were not isolated from samples. Samples of this vegetable were inoculated with a cocktail of Salmonella spp. and L. monocytogenes and exposed to gamma irradiation. D-10 values for Salmonella ranged from 0.16 to 0.19 kGy and for L. monocytogenes from 0.37 to 0.48 kGy. Kaempferol glycoside levels were 4 and ca. 3 times higher in samples exposed to 1 and 2 kGy, respectively, than in control samples. An increase in quercetin glycoside was also observed mainly in samples exposed to 1 kGy. In sensory evaluation, arugula had good acceptability, even after exposure to 2 and 4 kGy. These results indicate that irradiation has potential as a practical processing step to improve the safety of arugula.
Resumo:
Listeria monocytogenes is of particular concern for the food industry due to its psychrotolerant and ubiquitous nature. In this work, the ability of L monocytogenes culturable cells to adhere to stainless steel coupons was studied in co-culture with the bacteriocin-producing food isolate Lactobacillus sakei 1 as well as in the presence of the cell-free neutralized supernatant of L sakei 1 (CFSN-S1) containing sakacin 1. Results were compared with counts obtained using a non bacteriocin-producing strain (L sakei ATCC 15521) and its bacteriocin free supernatant (CFSN-SA). Culturable adherent L monocytogenes and lactobacilli cells were enumerated respectively on PALCAM and MRS agars at 3-h intervals for up to 12 h and after 24 and 48 h of incubation. Bacteriocin activity was evaluated by critical dilution method. After 6 h of incubation, the number of adhered L monocytogenes cells in pure culture increased from 3.8 to 5.3 log CFU/cm(2) (48h). Co-culture with L sakei 1 decreased the number of adhered L monocytogenes cells (P < 0.001) during all sampling times with counts lower than 3.0 log CFU/cm(2). The CFNS-S1 also led to a significant and similar reduction in culturable adhered L. monocytogenes counts for up to 24 h of incubation, however after 48 h of incubation, re-growth of L monocytogenes number of adhered cells was observed, likely due to lack of competition for nutrients. L sakei ATCC 15521 or its supernatant (CFNS-SA) did not reduce the number of adhered L monocytogenes cells on stainless steel surface and from 6 h of incubation, listerial counts were between 4.3 and 4.5 log CFU/cm(2). These results indicate that L sakei 1 and its bacteriocin sakacin 1 may be useful to inhibit early stages of L monocytogenes adherence to abiotic surface. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
View to south-east corner, clad in corrugated steel sheeting with colonnade below.
Resumo:
The stress corrosion cracking (SCC) initiation process for 4340 high strength steel in distilled water at room temperature was studied using a new kind of instrument: an environmental scanning electron microscope (ESEM). It was found that the applied stress accelerated oxide film formation which has an important influence on the subsequent SCC initiation. SCC was observed to initiate in the following circumstances: (1) cracking of a thick oxide film leading to SCC initiation along metal grain boundaries, (2) the initiation of pits initiating SCC in the metal and (3) SCC initiating from the edge of the specimen. All these three SCC initiation circumstances are consistent with the following model which couples SCC initiation with cracking of a surface protective oxide. There is a dynamic interaction between oxide formation, the applied stress, oxide cracking, pitting and the initiation of SCC. An aspect of the dynamic interaction is cracks forming in a protective surface oxide because of the applied stress, exposing to the water bare metal at the oxide crack tip, and oxidation of the bare metal causing crack healing. Oxide crack healing would be competing with the initiation of intergranular SCC if an oxide crack meets the metal surface at a grain boundary. If the intergranular SCC penetration is sufficiently fast along the metal grain boundary, then the crack yaws open preventing healing of the oxide crack. If intergranular SCC penetration is not sufficiently fast, then the oxidation process could produce sufficient oxide to fill both the stress corrosion crack and the oxide crack; in this case there would be initiation of SCC but only limited propagation of SCC. Stress-induced cracks in very thin oxide can induce pits which initiate SCC, and under some conditions such stress induced cracks in a thin oxide can directly initiate SCC.
Resumo:
This paper reports the application of linearly increasing stress testing (LIST) to the study of stress corrosion cracking (SCC) of carbon steel in 4 N NaNO3 and in Bayer liquor. LIST is similar to the constant extension-rate testing (CERT) methodology with the essential difference that the LIST is load controlled whereas the CERT is displacement controlled. The main conclusion is that LIST is suitable for the study of the SCC of carbon steels in 4 N NaNO3 and in Bayer liquor. The low crack velocity in Bayer liquor and a measured maximum stress close to that of the reference specimen in air both indicate that a low applied stress rate is required to study SCC in this system. (C) 1998 Chapman & Hall.
Resumo:
Analytical electron microscopy was used to measure the composition of grain boundaries (GBs) and interconstituent boundaries (IBs) of X52 pipeline steel using specimens about 40-60 nm in thickness. All elements of interest were examined with the exception of carbon. With this caveat; there was no segregation at proeutectoid ferrite GBs. This indicated that the commonly expected species S and P are not responsible for preferential corrosion of GBs during intergranular stress corrosion cracking of pipeline steels. Manganese was the only species measured to segregate at the IBs. Manganese segregated to the IBs between proeutectoid ferrite and pearlitic cementite, and desegregated from IBs between proeutectoid ferrite and pearlitic ferrite. The pearlitic cementite was Mn rich. There was no Mn segregation at the IBs between pearlitic ferrite and pearlitic cementite. The pattern of Mn segregation could be explained in terms of diffusion in the process zone ahead of the pearlite during the austenite to pearlite transformation and diffusion in the IBs between the proeutectoid ferrite and pearlite. (C) 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
An examination has been carried out of the secondary passive film on Type 304 stainless steel in 0.5 M H2SO4. The characterization techniques used were electrochemical (potentiodynamic; potentiostatic, and film reduction experiments) and surface analytical. A bilayer model for the secondary passive film is proposed. It appears that next to the metal, there is a modified passive film which controls the electrochemical response; i.e., governs the current for any applied potential. On top of this modified passive film, the experimental data are consistent with a ''porous'' corrosion-product film which adds to the total film thickness but has little influence on the electrochemical response. The composition of the secondary passive film corresponds most probably to a mixed Fe/Cr oxide/hydroxide enriched in Cr3+, With a composition similar to a primary passive film.
Resumo:
This paper reports on measurements of crack growth by environmental assisted fracture (EAF) for 4340 steel in water and in air at various relative humidities. Of most interest is the observation of slow crack propagation in dry air. Fractographic analysis leads to the strong suggestion that this slow crack propagation is due to hydrogen cracking caused by internal hydrogen in solid solution inside the sample material.
Resumo:
Objectives The purpose of the present work was to characterize file pharmacological profile of different L. alba chemotypes and to correlate the obtained data to the presence of chemical constituents detected by phytochemical analysis. Methods Essential oils from each L. alba chemotype (LP1-LP7) were characterized by gas chromatography-mass spectrometry (GC-MS) and extracted non-volatile compounds were analysed by HPLC and GC-MS. The anticonvulsant actions of file extracted compounds were studied in pentylenetetrazole-induced clonic seizures in mice and then effect oil motor coordination was studied using the rota-rod test in rats. The synaptosomes and synaptic membranes of the rats were examined for the influence of LP3 chemotype extract oil GABA uptake and binding experiments. Key findings Behavioural parameters encompassed by the pentylenetetrazole test indicated that 80% ethanolic extracts of LP1, LP3 and LP6 L. alba chemotypes were more effective as anticonvulsant agents. Neurochemical assays using synaptosomes and synaptic membranes showed that L. alba LP3 chemotype 80% ethanolic extract inhibited GABA uptake and GABA binding ill a dose-dependent manner. HPLC analysis showed that LP1, LP3 and LP6 80% ethanolic extracts presented a similar profile of constituents, differing from those seen in LP2, LP4, LP5 and LP7 80% ethanolic extracts, which exhibited no anticonvulsant effect. GC-MS analysis indicated the Occurrence of phenylpropanoids in methanolic fractions obtained from LP1, LP3 and LP6 80% ethanolic extracts and also the accumulation of inositol and flavonoids in hydroalcoholic fractions. Conclusions Our results suggest that the anticonvulsant properties shown by L. alba might be correlated to the presence of it complex of non-volatile Substances (phenylpropanoids, flavonoids and/or inositols), and also to the volatile terpenoids (beta-myrcene, citral, limonene and carvone), which have been previously Validated as anticonvulsants.