959 resultados para statistical quantum field theory
Resumo:
We study inverse problems in neural field theory, i.e., the construction of synaptic weight kernels yielding a prescribed neural field dynamics. We address the issues of existence, uniqueness, and stability of solutions to the inverse problem for the Amari neural field equation as a special case, and prove that these problems are generally ill-posed. In order to construct solutions to the inverse problem, we first recast the Amari equation into a linear perceptron equation in an infinite-dimensional Banach or Hilbert space. In a second step, we construct sets of biorthogonal function systems allowing the approximation of synaptic weight kernels by a generalized Hebbian learning rule. Numerically, this construction is implemented by the Moore–Penrose pseudoinverse method. We demonstrate the instability of these solutions and use the Tikhonov regularization method for stabilization and to prevent numerical overfitting. We illustrate the stable construction of kernels by means of three instructive examples.
Resumo:
Hamiltonian dynamics describes the evolution of conservative physical systems. Originally developed as a generalization of Newtonian mechanics, describing gravitationally driven motion from the simple pendulum to celestial mechanics, it also applies to such diverse areas of physics as quantum mechanics, quantum field theory, statistical mechanics, electromagnetism, and optics – in short, to any physical system for which dissipation is negligible. Dynamical meteorology consists of the fundamental laws of physics, including Newton’s second law. For many purposes, diabatic and viscous processes can be neglected and the equations are then conservative. (For example, in idealized modeling studies, dissipation is often only present for numerical reasons and is kept as small as possible.) In such cases dynamical meteorology obeys Hamiltonian dynamics. Even when nonconservative processes are not negligible, it often turns out that separate analysis of the conservative dynamics, which fully describes the nonlinear interactions, is essential for an understanding of the complete system, and the Hamiltonian description can play a useful role in this respect. Energy budgets and momentum transfer by waves are but two examples.
Resumo:
We solve eight partial-differential, two-dimensional, nonlinear mean field equations, which describe the dynamics of large populations of cortical neurons. Linearized versions of these equations have been used to generate the strong resonances observed in the human EEG, in particular the α-rhythm (8–), with physiologically plausible parameters. We extend these results here by numerically solving the full equations on a cortex of realistic size, which receives appropriately “colored” noise as extra-cortical input. A brief summary of the numerical methods is provided. As an outlook to future applications, we explain how the effects of GABA-enhancing general anaesthetics can be simulated and present first results.
Resumo:
Anesthetic and analgesic agents act through a diverse range of pharmacological mechanisms. Existing empirical data clearly shows that such "microscopic" pharmacological diversity is reflected in their "macroscopic" effects on the human electroencephalogram (EEG). Based on a detailed mesoscopic neural field model we theoretically posit that anesthetic induced EEG activity is due to selective parametric changes in synaptic efficacy and dynamics. Specifically, on the basis of physiologically constrained modeling, it is speculated that the selective modification of inhibitory or excitatory synaptic activity may differentially effect the EEG spectrum. Such results emphasize the importance of neural field theories of brain electrical activity for elucidating the principles whereby pharmacological agents effect the EEG. Such insights will contribute to improved methods for monitoring depth of anesthesia using the EEG.
Resumo:
The term neural population models (NPMs) is used here as catchall for a wide range of approaches that have been variously called neural mass models, mean field models, neural field models, bulk models, and so forth. All NPMs attempt to describe the collective action of neural assemblies directly. Some NPMs treat the densely populated tissue of cortex as an excitable medium, leading to spatially continuous cortical field theories (CFTs). An indirect approach would start by modelling individual cells and then would explain the collective action of a group of cells by coupling many individual models together. In contrast, NPMs employ collective state variables, typically defined as averages over the group of cells, in order to describe the population activity directly in a single model. The strength and the weakness of his approach are hence one and the same: simplification by bulk. Is this justified and indeed useful, or does it lead to oversimplification which fails to capture the pheno ...
Resumo:
The third law of thermodynamics is formulated precisely: all points of the state space of zero temperature I""(0) are physically adiabatically inaccessible from the state space of a simple system. In addition to implying the unattainability of absolute zero in finite time (or ""by a finite number of operations""), it admits as corollary, under a continuity assumption, that all points of I""(0) are adiabatically equivalent. We argue that the third law is universally valid for all macroscopic systems which obey the laws of quantum mechanics and/or quantum field theory. We also briefly discuss why a precise formulation of the third law for black holes remains an open problem.
Resumo:
We analyze the consistency of the recently proposed regularization of an identity based solution in open bosonic string field theory. We show that the equation of motion is satisfied when it is contracted with the regularized solution itself. Additionally, we propose a similar regularization of an identity based solution in the modified cubic superstring field theory.
Resumo:
We derive a closed-form analytic expression in momentum space for the asymptotic non-hydrogenic wavefunction of the quantum defect theory (QDT) due to Seaton and compare it with a widely used QDT-approximate wavefunction for the Rydberg states Li-3(2s), Mg-24(6s) and Rb-37(5s).
Resumo:
The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.
Resumo:
I review the construction of an action for open superstring field theory which does not suffer from the contact term problems of other approaches. I also discuss a possible generalization of this action for closed superstring field theory.
Resumo:
A classical action for open superstring field theory has been proposed which does not suffer from contact term problems. After generalizing this action to include the non-GSO projected states of the Neveu-Schwarz string, the pure tachyon contribution to the tachyon potential is explicitly computed. The potential has a minimum of V = 1/32g(2) which is 60% of the predicted exact minimum of V = 1/2 pi(2)g(2) from D-brane arguments.
Resumo:
An open superstring field theory action has been proposed which does not suffer from contact term divergences. In this paper, we compute the on-shell four-point tree amplitude fi om this action using the Giddings map. After including contributions from the quartic term in the action, the resulting amplitude agrees with the first-quantized prescription. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The thermodynamical partition function of the Duffin-Kemmer-Petiau theory is evaluated using the imaginary-time formalism of quantum field theory at finite temperature and path integral methods. The DKP partition function displays two features: (i) full equivalence with the partition function for charged scalar particles and charged massive spin 1 particles; and (ii) the zero mode sector which is essential to reproduce the well-known relativistic Bose-Einstein condensation for both theories. (C) 2003 Published by Elsevier B.V.
Resumo:
The matching of the BPS part of the (super) membrane's spectrum enables one to obtain membrane's results via string calculations. We compute the thermodynamic behavior at large coupling constant by considering M-theory on a manifold with topology T-2 X R-9. In the small coupling limit of M-theory the entropy coincides with the standard entropy of type IIB strings. We claim that the finite temperature partition functions associated with BPS p-brane spectrum can be analytically continued to well-defined functionals. This means that finite temperature can be introduced in brane theory. For the point particle limit (p --> 0) the entropy has the standard behavior of thermodynamic quantities.
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS(3) x S-3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU' (2\2).