982 resultados para stability theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarographic and redox potential measurements on the cupric and cuprous complexes of ethylenediamine and EDTA have been carried out. From the ratio of the stability constants of the cupric and cuprous complexes, and the stability constant of the cupric complex, the stability constant of the cuprous-ethylenediamine complex is obtained. In the case of the EDTA complex it has been possible to obtain only βic/β2ous from the equilibrium concentrations of the cuprous and cupric complexes and the disproportionation constant. The inequalities for the appearance of step reduction waves have been given. The values of the stability constants of the cupric and cuprous complexes determined by the polarographic-redox potential method have been used to explain the appearance of step reduction waves in some systems and the non-appearance in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sufficient conditions are given for the L2-stability of a class of feedback systems consisting of a linear operator G and a nonlinear gain function, either odd monotone or restricted by a power-law, in cascade, in a negative feedback loop. The criterion takes the form of a frequency-domain inequality, Re[1 + Z(jω)] G(jω) δ > 0 ω ε (−∞, +∞), where Z(jω) is given by, Z(jω) = β[Y1(jω) + Y2(jω)] + (1 − β)[Y3(jω) − Y3(−jω)], with 0 β 1 and the functions y1(·), y2(·) and y3(·) satisfying the time-domain inequalities, ∝−∞+∞¦y1(t) + y2(t)¦ dt 1 − ε, y1(·) = 0, t < 0, y2(·) = 0, t > 0 and ε > 0, and , c2 being a constant depending on the order of the power-law restricting the nonlinear function. The criterion is derived using Zames' passive operator theory and is shown to be more general than the existing criteria

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a multi-class discrete-time processor-sharing queueing model for scheduled message communication over a discrete memoryless degraded broadcast channel. The framework we consider here models both the random message arrivals and the subsequent reliable communication by suitably combining techniques from queueing theory and information theory. Requests for message transmissions are assumed to arrive according to i.i.d. arrival processes. Then, (i) we derive an outer bound to the stability region of message arrival rate vectors achievable by the class of stationary scheduling policies, (ii) we show for any message arrival rate vector that satisfies the outer bound, that there exists a stationary "state-independent" policy that results in a stable system for the corresponding message arrival processes, and (iii) under an asymptotic regime, we show that the stability region of information arrival rate vectors is the information-theoretic capacity region of a degraded broadcast channel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We all have fresh in our memory what happened to the IT sector only a few years ago when the IT-bubble burst. The upswing of productivity in this sector slowed down, investors lost large investments, many found themselves looking for a new job, and countless dreams fell apart. Product developers in the IT sector have experienced a large number of organizational restructurings since the IT boom, including rapid growth, downsizing processes, and structural reforms. Organizational restructurings seem to be a complex and continuous phenomenon people in this sector have to deal with. How do software product developers retrospectively construct their work in relation to organizational restructurings? How do organizational restructurings bring about specific social processes in product development? This working paper focuses on these questions. The overall aim is to develop an understanding of how software product developers construct their work during organizational restructurings. The theoretical frame of reference is based on a social constructionist approach and discourse analysis. This approach offers more or less radical and critical alternatives to mainstream organizational theory. Writings from this perspective attempt to investigate and understand sociocultural processes by which various realities are created. Therefore these studies aim at showing how people participate in constituting the social world (Gergen & Thatchenkery, 1996); knowledge of the world is seen to be constructed between people in daily interaction, in which language plays a central role. This means that interaction, especially the ways of talking and writing about product development during organizational restructurings, become the target of concern. This study consists of 25 in-depth interviews following a pilot study based on 57 semi-structured interviews. In this working paper I analyze 9 in-depth interviews. The interviews were conducted in eight IT firms. The analysis explores how discourses are constructed and function, as well as the consequences that follow from different discourses. The analysis shows that even though the product developers have experienced many organizational restructurings, some of which have been far-reaching, their accounts build strongly on a stability discourse. According to this discourse product development is, perhaps surprisingly, not influenced to a great extent by organizational restructurings. This does not mean that product development is static. According to the social constructionist approach, product development is constantly being reproduced and maintained in ongoing processes. In other words stable effects are also ongoing achievements and these are of particular interest in this study. The product developers maintain rather than change the product development through ongoing processes of construction, even when they experience continuous extensive organizational restructurings. The discourse of stability exists alongside other discourses, some which contradict each other. Together they direct product development and generate meanings. The product developers consequently take an active role in the construction of their work during organizational restructurings. When doing this they also negotiate credible positions for themselves

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

System of kinematical conservation laws (KCL) govern evolution of a curve in a plane or a surface in space, even if the curve or the surface has singularities on it. In our recent publication K. R. Arun, P. Prasad, 3-D kinematical conservation laws (KCL): evolution of a surface in R-3-in particular propagation of a nonlinear wavefront, Wave Motion 46 (2009) 293-311] we have developed a mathematical theory to study the successive positions and geometry of a 3-D weakly nonlinear wavefront by adding an energy transport equation to KCL. The 7 x 7 system of equations of this KCL based 3-D weakly nonlinear ray theory (WNLRT) is quite complex and explicit expressions for its two nonzero eigenvalues could not be obtained before. In this short note, we use two different methods: (i) the equivalence of KCL and ray equations and (ii) the transformation of surface coordinates, to derive the same exact expressions for these eigenvalues. The explicit expressions for nonzero eigenvalues are important also for checking stability of any numerical scheme to solve 3-D WNLRT. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contributions of full-wake dynamics in trim analysis are demonstrated for finding the control inputs and periodic responses simultaneously, as well as in Floquet eigenanalysis for finding the damping levels. The equations of flap bending, lag bending, and torsion are coupled with a three-dimensional, finite state wake, and low-frequency (<1/rev) to high frequency (>1/rev) multiblade modes are considered. Full blade-wake dynamics is used in trim analysis and Floquet eigenanalysis. A uniform cantilever blade in trimmed flight is investigated over a range of thrust levels, advance ratios, number of blades, and blade torsional frequencies. The investigation includes the convergence characteristics of control inputs, periodic responses, and damping levels with respect to the number of spatial azimuthal harmonics and radial shape functions in the wake representation. It also includes correlation with the measured lag damping of a three-bladed untrimmed rotor. The parametric study shows the dominant influence of wake dynamics on control inputs, periodic responses, and damping levels, and wake theory generally improves the correlation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Critical buckling loads of laminated fibre-reinforced plastic square panels have been obtained using the finite element method. Various boundary conditions, lay-up details, fibre orientations, cut-out sizes are considered. A 36 degrees of freedom triangular element, based on the classical lamination theory (CLT) has been used for the analysis. The performance of this element is validated by comparing results with some of those available in literature. New results have been given for several cases of boundary conditions for [0°/ ± 45°/90°]s laminates. The effect of fibre-orientation in the ply on the buckling loads has been investigated by considering [±?]6s laminates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow and utilizing a special coordinate transformation. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms nominally of order R(-1) in the boundary-layer Reynolds number R. In Blasius flow, the present approach is consistent with that of Bertolotti et al. (1992) to O(R(-1)) but simpler (i.e. has fewer terms), and may best be seen as providing a parametric differential equation which can be solved without having to march in space. The computed neutral boundaries depend strongly on distance from the surface, but the one corresponding to the inner maximum of the streamwise velocity perturbation happens to be close to the parallel flow (Orr-Sommerfeld) boundary. For this quantity, solutions for the Falkner-Skan flows show the effects of spatial growth to be striking only in the presence of strong adverse pressure gradients. As a rational analysis to O(R(-1)) demands inclusion of higher-order corrections on the mean flow, an illustrative calculation of one such correction, due to the displacement effect of the boundary layer, is made, and shown to have a significant destabilizing influence on the stability boundary in strong adverse pressure gradients. The effect of non-parallelism on the growth of relatively high frequencies can be significant at low Reynolds numbers, but is marginal in other cases. As an extension of the present approach, a method of dealing with non-similar flows is also presented and illustrated. However, inherent in the transformation underlying the present approach is a lower-order non-parallel theory, which is obtained by dropping all terms of nominal order R(-1) except those required for obtaining the lowest-order solution in the critical and wall layers. It is shown that a reduced Orr-Sommerfeld equation (in transformed coordinates) already contains the major effects of non-parallelism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design technique for an SVC-based power system damping controller has been proposed. The controller attempts to place all plant poles within a specified region on the s-plane to guarantee the desired closed loop performance. The use of Horowitz's quantitative feedback theory (QFT) permits the design of a 'fixed gain controller' that maintains its performance in spite of large variations in the plant parameters during its normal course of operation. The required controller parameters are arrived at by solving an optimization problem that incorporates the control specifications. The performance of this robust controller has been evaluated on a single machine infinite bus system equipped with a mid point SVC, and the results are shown to be consistent with the expected performance of the stabilizer. (C) 1998 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anodized nanotubular and nanoporous zirconia membranes are of interest for applications involving elevated temperatures in excess of 400 degrees C, such as templates for the synthesis of nanostructures, catalyst supports, fuel cells and sensors. Thermal stability is thus an important attribute. The study described in this paper shows that the as-anodized nanoporous membranes can withstand more adverse temperature-time combinations than nanotubular membranes. Chemical treatment of the nanoporous membranes was found to further enhance their thermal stability. The net result is an enhancement in the limiting temperature from 500 degrees C for nanotubular membranes to 1000 degrees C for the chemically treated nanoporous membranes. The reasons for membrane degradation on thermal exposure and the mechanism responsible for retarding the same are discussed within the framework of the theory of thermal grooving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Film flows on inclined surfaces are often assumed to be of constant thickness, which ensures that the velocity profile is half-Poiseuille. It is shown here that by shallow water theory, only flows in a portion of Reynolds number-Froude number (Re-Fr) plane can asymptotically attain constant film thickness. In another portion on the plane, the constant thickness solution appears as an unstable fixed point, while in other regions the film thickness seems to asymptote to a positive slope. Our simulations of the Navier-Stokes equations confirm the predictions of shallow water theory at higher Froude numbers, but disagree with them at lower Froude numbers. We show that different regimes of film flow show completely different stability behaviour from that predicted earlier. Supercritical decelerating flows are shown to be always unstable, whereas accelerating flows become unstable below a certain Reynolds number for a given Froude number. Subcritical flows on the other hand are shown to be unstable above a certain Reynolds number. In some range of parameters, two solutions for the base flowexist, and the attached profile is found to be more stable. All flows except those with separation become more stable as they proceed downstream. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4758299]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension d = 2 and long ranged in d = 3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in our simplest model in d = 2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in these systems. DOI: 10.1103/PhysRevLett.110.118102

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.