976 resultados para splanchnic tissues


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An immunohistochemical method using antibodies against polycyclic aromatic hydrocarbons (PAHs) and dioxins was developed on frozen tissue sections of the earthworm Eisenia andrei exposed to environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50 ppm) and 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) (0.01, 0.1, 2 ppb) in spiked standard soils. The concentrations of B[a]P and TCDD in E. andrei exposed to the same conditions were also measured using analytical chemical procedures. The results demonstrated that tissues of worms exposed to even minimal amount of B[a]P and TCDD reacted positively and specifically to anti-PAHs and -dioxins antibody. Immunofluorescence revealed a much more intense staining for the gut compared to the body wall; moreover, positively immunoreactive amoeboid coelomocytes were also observed, i.e. cells in which we have previously demonstrated the occurrence of genotoxic damage. The double immunolabelling with antibodies against B[a]P/TCDD and the lysosomal enzyme cathepsin D demonstrated the lysosomal accumulation of the organic xenobiotic compounds, in particular in the cells of the chloragogenous tissue as well as in coelomocytes, involved into detoxification and protection of animals against toxic chemicals. The method described is timesaving, not expensive and easily applicable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have compared the expression of the known measles virus (MV) receptors, membrane cofactor protein (CD46) and the signaling lymphocyte-activation molecule (SLAM), using immunohistochemistry, in a range of normal peripheral tissues (known to be infected by MV) as well as in normal and subacute sclerosing panencephalitis (SSPE) brain. To increase our understanding of how these receptors could be utilized by wild-type or vaccine strains in vivo, the results have been considered with regard to the known route of infection and systemic spread of MV. Strong staining for CD46 was observed in endothelial cells lining blood vessels and in epithelial cells and tissue macrophages in a wide range of peripheral tissues, as well as in Langerhans' and squamous cells in the skin. In lymphoid tissues and blood, subsets of cells were positive for SLAM, in comparison to CD46, which stained all nucleated cell types. Strong CD46 staining was observed on cerebral endothelium throughout the brain and also on ependymal cells lining the ventricles and choroid plexus. Comparatively weaker CD46 staining was observed on subsets of neurons and oligodendrocytes. In SSPE brain sections, the areas distant from lesion sites and negative for MV by immunocytochemistry showed the same distribution for CD46 as in normal brain. However, cells in lesions, positive for MV, were negative for CD46. Normal brain showed no staining for SLAM, and in SSPE brain only subsets of leukocytes in inflammatory infiltrates were positive. None of the cell types most commonly infected by MV show detectable expression of SLAM, whereas CD46 is much more widely expressed and could fulfill a receptor function for some wild-type strains. In the case of wild-type stains, which are unable to use CD46, a further as yet unknown receptor(s) would be necessary to fully explain the pathology of MV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.