849 resultados para spatio-temporal characteristics
Resumo:
Ozone present in the atmosphere not only absorbs the biologically harmful ultraviolet radiation but also is an important ingredient of the climate system. The radiative absorption properties of ozone make it a determining factor in the structure of the atmosphere. Ozone in the troposphere has many negative impacts on humans and other living beings. Another significant aspect is the absorption of outgoing infrared radiation by ozone thus acting as a greenhouse gas. The variability of ozone in the atmosphere involves many interconnections with the incoming and outgoing radiation, temperature circulation etc. Hence ozone forms an important part of chemistry-climate as well as radiative transfer models. This aspect also makes the quantification of ozone more important. The discovery of Antarctic ozone hole and the role of anthropogenic activities in causing it made it possible to plan and implement necessary preventive measures. Continuous monitoring of ozone is also necessary to identify the effect of these preventive steps. The reactions involving the formation and destruction of ozone are influenced significantly by the temperature fluctuations of the atmosphere. On the other hand the variations in ozone can change the temperature structure of the atmosphere. Indian subcontinent is a region having large weather and climate variability which is evident from the large interannual variability of monsoon system over the region. Nearly half of Indian region comprises the tropical region. Most of ozone is formed in the tropical region and transported to higher latitudes. The formation and transport of ozone can be influenced by changes in solar radiation and various atmospheric circulation features. Besides industrial activities and vehicular traffic is more due to its large population. This may give rise to an increase in the production of tropospheric ozone which is greenhouse gas. Hence it becomes necessary to monitor the atmospheric ozone over this region. This study probes into the spatial distribution and temporal evolution of ozone over Indian subcontinent and discusses the contributing atmospheric parameters.
Resumo:
Urban developments have exerted immense pressure on wetlands. Urban areas are normally centers of commercial activity and continue to attract migrants in large numbers in search of employment from different areas. As a result, habitations keep coming up in the natural areas / flood plains. This is happening in various Indian cities and towns and large habitations are coming up in low-lying areas, often encroaching even over drainage channels. In some cases, houses are constructed even on top of nallahs and drains. In the case of Kochi the situation is even worse as the base of the urban development itself stands on a completely reclaimed island. Also the topography and geology demanded more reclamation of land when the city developed as an agglomerative cluster. Cochin is a coastal settlement interspersed with a large backwater system and fringed on the eastern side by laterite-capped low hills from which a number of streams drain into the backwater system. The ridge line of the eastern low hills provides a welldefined watershed delimiting Cochin basin which help to confine the environmental parameters within a physical limit. This leads to an obvious conclusion that if physiography alone is considered, the western flatland is ideal for urban development. However it will result in serious environmental deterioration, as it comprises mainly of wetland and for availability of land there has to be large scale filling up of these wetlands which includes shallow mangrove-fringed water sheets, paddy fields, Pokkali fields, estuary etc.Chapter 1 School 4 of Environmental Studies The urban boundaries of Cochin are expanding fast with a consequent over-stretching of the existing fabric of basic amenities and services. Urbanisation leads to the transformation of agricultural land into built-up areas with the concomitant problems regarding water supply, drainage, garbage and sewage disposal etc. Many of the environmental problems of Cochin are hydrologic in origin; like water-logging / floods, sedimentation and pollution in the water bodies as well as shoreline erosion
Resumo:
The present study is focused on the intensity distribution of rainfall in different classes and their contribution to the total seasonal rainfall. In addition, we studied the spatial and diurnal variation of the rainfall in the study areas. For the present study, we retrieved data from TRMM (Tropical Rain Measuring Mission) rain rate available in every 3 h temporal and 25 km spatial resolutions. Moreover, station rainfall data is used to validate the TRMM rain rate and found significant correlation between them (linear correlation coefficients are 0.96, 0.85, 0.75 and 0.63 for the stations Kota Bharu, Senai, Cameron highlands and KLIA, respectively). We selected four areas in the Peninsular Malaysia and they are south coastal, east coastal, west coastal and highland regions. Diurnal variation of frequency of rain occurrence is different for different locations. We noticed bimodal variation in the coastal areas in most of the seasons and unimodal variation in the highland/inland area. During the southwest monsoon period in the west coastal stations, there is no distinct diurnal variation. The distribution of different intensity classes during different seasons are explained in detail in the results
Resumo:
In this paper, moving flock patterns are mined from spatio- temporal datasets by incorporating a clustering algorithm. A flock is defined as the set of data that move together for a certain continuous amount of time. Finding out moving flock patterns using clustering algorithms is a potential method to find out frequent patterns of movement in large trajectory datasets. In this approach, SPatial clusteRing algoRithm thrOugh sWarm intelligence (SPARROW) is the clustering algorithm used. The advantage of using SPARROW algorithm is that it can effectively discover clusters of widely varying sizes and shapes from large databases. Variations of the proposed method are addressed and also the experimental results show that the problem of scalability and duplicate pattern formation is addressed. This method also reduces the number of patterns produced
Resumo:
The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009.During phase 1 intense upwelling was observed along the southern transects (8◦N and 8.5◦N). The maximum chlorophyll a concentration (22.7 mg m −3) was observed in the coastal waters off Thiruvananthapuram (8.5◦N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8◦N transect. Along the 8.5◦N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9◦N transect (25 mg m−3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5◦N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m−3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9◦N and 10◦N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.
Resumo:
Time-resolved diffraction with femtosecond electron pulses has become a promising technique to directly provide insights into photo induced primary dynamics at the atomic level in molecules and solids. Ultrashort pulse duration as well as extensive spatial coherence are desired, however, space charge effects complicate the bunching of multiple electrons in a single pulse.Weexperimentally investigate the interplay between spatial and temporal aspects of resolution limits in ultrafast electron diffraction (UED) on our highly compact transmission electron diffractometer. To that end, the initial source size and charge density of electron bunches are systematically manipulated and the resulting bunch properties at the sample position are fully characterized in terms of lateral coherence, temporal width and diffracted intensity.Weobtain a so far not reported measured overall temporal resolution of 130 fs (full width at half maximum) corresponding to 60 fs (root mean square) and transversal coherence lengths up to 20 nm. Instrumental impacts on the effective signal yield in diffraction and electron pulse brightness are discussed as well. The performance of our compactUEDsetup at selected electron pulse conditions is finally demonstrated in a time-resolved study of lattice heating in multilayer graphene after optical excitation.
Resumo:
Phytophthora ramorum is a damaging invasive plant pathogen and was first discovered in the UK in 2002. Spatial point analyses were applied to the occurrence of this disease in England and Wales during the period of 2003-2006 in order to assess its spatio-temporal spread. Out of the 4301 garden centres and nurseries (GCN) surveyed, there were 164, 105, 123 and 41 sites with P. ramorum in 2003, 2004, 2005 and 2006, respectively. Spatial analysis of the observed point patterns of GCN outbreaks suggested that these sites were significantly clumped within a radius of ca 60 km in 2003, but not in later years. Further analyses were conducted to determine the relationship of GCN outbreak sites over two consecutive years and thus to infer possible disease spread over time. This analysis suggested that disease spread among GCN sites was most likely to have occurred within a distance of 60 km for 2003-2004, but not for the later years. There were 35, 63, 81 and 58 sites with P. ramorum in the semi-natural environment (SNE). Analyses were carried out to assess whether infected GCN sites could act as an inoculum source of infected SNE plants or vice versa. In all years, there was a significant spatial closeness among GCN and SNE outbreak sites within a distance of 1 km. But a significant relationship over a longer distance (within 60 km) was only observed between cases in 2003 and 2004. These analyses suggest that statutory actions taken so far appear to have reduced the extent of long-distance spread of P. ramorum among garden centres and nurseries, but not the disease spread at a shorter distance between GCN and SNE sites.
Resumo:
This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.
Resumo:
Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
Resumo:
Urban domestic cat (Felis catus) populations can attain exceedingly high densities and are not limited by natural prey availability. This has generated concerns that they may negatively affect prey populations, leading to calls for management. We enlisted cat-owners to record prey returned home to estimate patterns of predation by free-roaming pets in different localities within the town of Reading, UK and questionnaire surveys were used to quantify attitudes to different possible management strategies. Prey return rates were highly variable: only 20% of cats returned ≥4 dead prey annually. Consequently, approximately 65% of owners received no prey in a given season, but this declined to 22% after eight seasons. The estimated mean predation rate was 18.3 prey cat−1 year−1 but this varied markedly both spatially and temporally: per capita predation rates declined with increasing cat density. Comparisons with estimates of the density of six common bird prey species indicated that cats killed numbers equivalent to adult density on c. 39% of occasions. Population modeling studies suggest that such predation rates could significantly reduce the size of local bird populations for common urban species. Conversely, most urban residents did not consider cat predation to be a significant problem. Collar-mounted anti-predation devices were the only management action acceptable to the majority of urban residents (65%), but were less acceptable to cat-owners because of perceived risks to their pets; only 24% of cats were fitted with such devices. Overall, cat predation did appear to be of sufficient magnitude to affect some prey populations, although further investigation of some key aspects of cat predation is warranted. Management of the predation behavior of urban cat populations in the UK is likely to be challenging and achieving this would require considerable engagement with cat owners.
Resumo:
Drought characterisation is an intrinsically spatio-temporal problem. A limitation of previous approaches to characterisation is that they discard much of the spatio-temporal information by reducing events to a lower-order subspace. To address this, an explicit 3-dimensional (longitude, latitude, time) structure-based method is described in which drought events are defined by a spatially and temporarily coherent set of points displaying standardised precipitation below a given threshold. Geometric methods can then be used to measure similarity between individual drought structures. Groupings of these similarities provide an alternative to traditional methods for extracting recurrent space-time signals from geophysical data. The explicit consideration of structure encourages the construction of summary statistics which relate to the event geometry. Example measures considered are the event volume, centroid, and aspect ratio. The utility of a 3-dimensional approach is demonstrated by application to the analysis of European droughts (15 °W to 35°E, and 35 °N to 70°N) for the period 1901–2006. Large-scale structure is found to be abundant with 75 events identified lasting for more than 3 months and spanning at least 0.5 × 106 km2. Near-complete dissimilarity is seen between the individual drought structures, and little or no regularity is found in the time evolution of even the most spatially similar drought events. The spatial distribution of the event centroids and the time evolution of the geographic cross-sectional areas strongly suggest that large area, sustained droughts result from the combination of multiple small area (∼106 km2) short duration (∼3 months) events. The small events are not found to occur independently in space. This leads to the hypothesis that local water feedbacks play an important role in the aggregation process.
Resumo:
The Southern Ocean circulation consists of a complicated mixture of processes and phenomena that arise at different time and spatial scales which need to be parametrized in the state-of-the-art climate models. The temporal and spatial scales that give rise to the present-day residual mean circulation are here investigated by calculating the Meridional Overturning Circulation (MOC) in density coordinates from an eddy-permitting global model. The region sensitive to the temporal decomposition is located between 38°S and 63°S, associated with the eddy-induced transport. The ‘‘Bolus’’ component of the residual circulation corresponds to the eddy-induced transport. It is dominated by timescales between 1 month and 1 year. The temporal behavior of the transient eddies is examined in splitting the ‘‘Bolus’’ component into a ‘‘Seasonal’’, an ‘‘Eddy’’ and an ‘‘Inter-monthly’’ component, respectively representing the correlation between density and velocity fluctuations due to the average seasonal cycle, due to mesoscale eddies and due to large-scale motion on timescales longer than one month that is not due to the seasonal cycle. The ‘‘Seasonal’’ bolus cell is important at all latitudes near the surface. The ‘‘Eddy’’ bolus cell is dominant in the thermocline between 50°S and 35°S and over the whole ocean depth at the latitude of the Drake Passage. The ‘‘Inter-monthly’’ bolus cell is important in all density classes and is maximal in the Brazil–Malvinas Confluence and the Agulhas Return Current. The spatial decomposition indicates that a large part of the Eulerian mean circulation is recovered for spatial scales larger than 11.25°, implying that small-scale meanders in the Antarctic Circumpolar Current (ACC), near the Subantarctic and Polar Fronts, and near the Subtropical Front are important in the compensation of the Eulerian mean flow.