968 resultados para space-temporal variability


Relevância:

90.00% 90.00%

Publicador:

Resumo:

[ES] En este trabajo hemos contribuido al estudio de la estructura de la comunidad planctónica y a su variabilidad temporal, utilizando un enfoque de end-to-end , desde las bacterias hasta el mesozooplancton haciendo especial énfasis en el microplancton. Nuestro trabajo muestra la importancia de los efectos bottom-up y top-down que regulan la estructura de las comunidades planctónicas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN] Meiofaunal assemblages from intertidal and shallow subtidal seabeds were studied at two sites (one dominated by volcanic sands and the other by organogenic sands) at Tenerife (Canary Islands, NE Atlantic Ocean) throughout an entire year (May 2000?April 2001). Specifically, we aimed (i) to test for differences in diversity, structure, and stability between intertidal and subtidal meiofaunal assemblages, and (ii) to determine if differences in the meiofaunal assemblage structure may be explained by environmental factors (granulometric composition, availability of organic matter, and carbonate content in sediments). A total of 103,763 meiofaunal individuals were collected, including 203 species from 19 taxonomic groups (Acari, Amphipoda, Cnidaria, Copepoda, Echinodermata, Gastrotricha, Isopoda, Insecta, Kinorrhyncha, Misidacea, Nematoda, Nemertini, Oligochaeta, Ostracoda, Polychaeta, Priapulida, Sipuncula, Tanaidacea, and Turbellaria). Nematodes were the most abundant taxonomic group. Species diversity was higher in the subtidal than in the intertidal zone at both sites, as a result of the larger dominance of a few species in the intertidal zone. The meiofaunal assemblage structure was different between tidal levels at both sites, the intertidal presenting greater temporal variability (multivariate dispersion) in the meiofaunal assemblage structure than the subtidal. Sediment grain size, here quantified by the different granulometric fractions, explained the variability in meiofaunal assemblage structure to a greater extent than the percentage of carbonates, a variable linked to sediment origin. This study revealed differences in diversity, assemblage structure, and variability between intertidal and subtidal meiofauna.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Universidad de Las Palmas de Gran Canaria. Facultad de Ciencias del Mar. Programa de doctorado en Oceanografía. Diploma de Estudios Avanzados

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis objectives are to develop new methodologies for study of the space and time variability of Italian upper ocean ecosystem through the combined use of multi-sensors satellite data and in situ observations and to identify the capability and limits of remote sensing observations to monitor the marine state at short and long time scales. Three oceanographic basins have been selected and subjected to different types of analyses. The first region is the Tyrrhenian Sea where a comparative analysis of altimetry and lagrangian measurements was carried out to study the surface circulation. The results allowed to deepen the knowledge of the Tyrrhenian Sea surface dynamics and its variability and to defined the limitations of satellite altimetry measurements to detect small scale marine circulation features. Channel of Sicily study aimed to identify the spatial-temporal variability of phytoplankton biomass and to understand the impact of the upper ocean circulation on the marine ecosystem. An combined analysis of the satellite of long term time series of chlorophyll, Sea Surface Temperature and Sea Level field data was applied. The results allowed to identify the key role of the Atlantic water inflow in modulating the seasonal variability of the phytoplankton biomass in the region. Finally, Italian coastal marine system was studied with the objective to explore the potential capability of Ocean Color data in detecting chlorophyll trend in coastal areas. The most appropriated methodology to detect long term environmental changes was defined through intercomparison of chlorophyll trends detected by in situ and satellite. Then, Italian coastal areas subject to eutrophication problems were identified. This work has demonstrated that satellites data constitute an unique opportunity to define the features and forcing influencing the upper ocean ecosystems dynamics and can be used also to monitor environmental variables capable of influencing phytoplankton productivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Traffic particle concentrations show considerable spatial variability within a metropolitan area. We consider latent variable semiparametric regression models for modeling the spatial and temporal variability of black carbon and elemental carbon concentrations in the greater Boston area. Measurements of these pollutants, which are markers of traffic particles, were obtained from several individual exposure studies conducted at specific household locations as well as 15 ambient monitoring sites in the city. The models allow for both flexible, nonlinear effects of covariates and for unexplained spatial and temporal variability in exposure. In addition, the different individual exposure studies recorded different surrogates of traffic particles, with some recording only outdoor concentrations of black or elemental carbon, some recording indoor concentrations of black carbon, and others recording both indoor and outdoor concentrations of black carbon. A joint model for outdoor and indoor exposure that specifies a spatially varying latent variable provides greater spatial coverage in the area of interest. We propose a penalised spline formation of the model that relates to generalised kringing of the latent traffic pollution variable and leads to a natural Bayesian Markov Chain Monte Carlo algorithm for model fitting. We propose methods that allow us to control the degress of freedom of the smoother in a Bayesian framework. Finally, we present results from an analysis that applies the model to data from summer and winter separately

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

lsochronal layers in firn detected with ground-penetrating radar (GPR) and dated using results from ice-core analyses are used to calculate accumulation rates along a 100 km across-flow profile in West Antarctica. Accumulation rates are shown to be highly variable over short distances. Elevation measurements from global positioning system surveys show that accumulation rates derived from shallow horizons correlate well with surface undulations, which implies that wind redistribution of snow is the leading cause of this variability. Temporal changes in accumulation rate over 25-185 year intervals are smoothed to along-track length scales comparable to surface undulations in order to identify trends in accumulation that are likely related to changes in climate. Results show that accumulation rates along this profile have decreased in recent decades, which is consistent with core-derived time series of annual accumulation rates measured at the two ends of the radar profile. These results suggest that temporal variability observed in accumulation-rate records from ice cores and GPR profiles can be obscured by spatial influences, although it is possible to resolve temporal signals if the effects of local topography and ice flow are quantified and removed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physical forcing and biological response within the California Current System (CCS) are highly variable over a wide range of scales. Satellite remote sensing offers the only feasible means of quantifying this variability over the full extent of the CCS. Using six years (1997-2003) of daily SST and chlorophyll imagery, we map the spatial dependence of dominant temporal variability at resolutions sufficient to identify recurrent mesoscale circulation and local pattern associated with coastal topography. Here we describe mean seasonal cycles and interannual variation; intraseasonal variability is left to a companion paper ( K. R. Legaard and A. C. Thomas, manuscript in preparation, 2006). Coastal upwelling dictates seasonality along north-central California, where weak cycles of SST fluctuate between spring minima and late summer maxima and chlorophyll peaks in early summer. Off northern California, chlorophyll maxima are bounded offshore by the seasonally recurrent upwelling jet. Seasonal cycles differ across higher latitudes and in the midlatitude Southern California Bight, where upwelling winds are less vigorous and/or persistent. Seasonality along south-central Baja is strongly affected by processes other than upwelling, despite year-round upwelling-favorable winds. Interannual variation is generally dominated by El Nino and La Nina conditions. Interannual SST variance is greatest along south-central Baja, although interannual variability constitutes a greater fraction of total variance inshore along southern Oregon and much of California. Patterns of interannual chlorophyll variance are consistent with dominant forcing through the widespread depression and elevation of the nutricline during El Nino and La Nina, respectively. Interannual variability constitutes a greater fraction of total chlorophyll variance offshore.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we examined the spatial and temporal variability of particulate organic material (POM) off Oregon during the upwelling season. High-resolution vertical profiling of beam attenuation was conducted along two cross-shelf transects. One transect was located in a region where the shelf is relatively uniform and narrow (off Cascade Head (CH)); the second transect was located in a region where the shelf is shallow and wide (off Cape Perpetua (CP)). In addition, water samples were collected for direct analysis of chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON). Beam attenuation was highly correlated with POC and PON. Striking differences in distribution patterns and characteristics of POM were observed between CH and CP. Off CH, elevated concentrations of chlorophyll and POC were restricted to the inner shelf and were highly variable in time. The magnitude of the observed short-term temporal variability was of the same order as that of the seasonal variability reported in previous studies. Elevated concentrations of nondegraded chlorophyll and POM were observed near the bottom. Downwelling and rapid sinking are two mechanisms by which phytoplankton cells can be delivered to the bottom before being degraded. POM may be then transported across the shelf via the benthic nepheloid layer. Along the CP transect, concentrations of POM were generally higher than they were along the CH transect and extended farther across the shelf. Characteristics of surface POM, namely, C: N ratios and carbon: chlorophyll ratios, differed between the two sites. These differences can be attributed to differences in shelf circulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first experiment of the ECOMARGE programme (ECOsystèmes de MARGE continentale) was initiated in 1983-1984, in the Gulf of Lions (northwestern Mediterranean Sea). The objectives of the ECOMARGE-I experiment were: to quantify the transfer of particulate matter, in general, and of organic carbon, in particular, from its introduction to and formation in the waters of the continental shelf-to its consumption or sedimentation on the shelf or its transfer to the slope and deep sea; and to understand the processes involved in that transfer, consumption and sedimentation together with their variability in space and time. The results of that experiment, from 1983 to 1988, are presented in this Special Issue. The highlights of the results are summarised in this paper. These results indicate that, of the particles formed in the waters of the continental shelf and those introduced by rivers, some are deposited as sediments on the shelf. A portion is transported offshore, however, to the slope and deep sea. The Rho^ne River, in the northeastern part of the study area, is the major source of continental material; this is transported to sea in a benthic nepheloid layer and, mostly, alongshore to the southwest. Here, it largely leaves the shelf through the canyons, especially the Lacaze-Duthiers Canyon. In the offshore waters, particle concentrations and distributions show surficial, intermediate and benthic nepheloid layers. These turbid structures increase towards the southwest, corresponding to the seaward shift of the front between the coastal waters and the Liguro-Provençal cyclonic gyre, a major forcing function in the Gulf of Lions. Considering the source and fate of particles (largely biogenic from the euphotic zone and abiogenic from deeper waters) a layered system is described, which is emphasized by the concentrations of natural and artificial elements and compounds. Of the flux of particles to the Lacaze-Duthiers Canyon, on a decadal scale, about 30% (as a minimum) is estimated to be stored as sediment; the remainder is transported down-canyon, towards the deep sea. The temporal variability of processes affecting this net seaward transport, of both biogenic and abiogenic material, is from hours, days to seasonal, and probably interannual, time scales. The response of the system to these variations is rapid, with pulses of increased discharge of particles from the adjacent shelf being detected in sediment traps in the Lacaze-Duthiers Canyon in less than 16 days (the temporal resolution of the traps). Based upon the study of tracers of particulate matter and environmental factors (i.e. river discharge and climatic conditions), it appears that the contribution from the Rho^ne River and its adjacent area is maximal during the winter; at this time, the flow of the Liguro-Provençal Current also increases. In contrast, the maximum relative contribution of the adjacent southwesterly area to the flux in the Lacaze-Duthiers Canyon occurs in summer, during storm events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic investigations on eukaryotic plankton confirmed the existence of modern biogeographic patterns, but analyses of palaeoecological data exploring the temporal variability of these patterns have rarely been presented. Ancient sedimentary DNA proved suitable for investigations of past assemblage turnover in the course of environmental change, but genetic relatedness of the identified lineages has not yet been undertaken. Here, we investigate the relatedness of diatom lineages in Siberian lakes along environmental gradients (i.e. across treeline transects), over geographic distance and through time (i.e. the last 7000 years) using modern and ancient sedimentary DNA. Our results indicate that closely-related Staurosira lineages occur in similar environments and less-related lineages in dissimilar environments, in our case different vegetation and co-varying climatic and limnic variables across treeline transects. Thus our study reveals that environmental conditions rather than geographic distance is reflected by diatom-relatedness patterns in space and time. We tentatively speculate that the detected relatedness pattern in Staurosira across the treeline could be a result of adaptation to diverse environmental conditions across the arctic boreal treeline, however, a geographically-driven divergence and subsequent repopulation of ecologically different habitats might also be a potential explanation for the observed pattern.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Las aplicaciones de la teledetección al seguimiento de lo que ocurre en la superficie terrestre se han ido multiplicando y afinando con el lanzamiento de nuevos sensores por parte de las diferentes agencias espaciales. La necesidad de tener información actualizada cada poco tiempo y espacialmente homogénea, ha provocado el desarrollo de nuevos programas como el Earth Observing System (EOS) de la National Aeronautics and Space Administration (NASA). Uno de los sensores que incorpora el buque insignia de ese programa, el satélite TERRA, es el Multi-angle Imaging SpectroRadiometer (MISR), diseñado para capturar información multiangular de la superficie terrestre. Ya desde los años 1970, se conocía que la reflectancia de las diversas ocupaciones y usos del suelo variaba en función del ángulo de observación y de iluminación, es decir, que eran anisotrópicas. Tal variación estaba además relacionada con la estructura tridimensional de tales ocupaciones, por lo que se podía aprovechar tal relación para obtener información de esa estructura, más allá de la que pudiera proporcionar la información meramente espectral. El sensor MISR incorpora 9 cámaras a diferentes ángulos para capturar 9 imágenes casi simultáneas del mismo punto, lo que permite estimar con relativa fiabilidad la respuesta anisotrópica de la superficie terrestre. Varios trabajos han demostrado que se pueden estimar variables relacionadas con la estructura de la vegetación con la información que proporciona MISR. En esta Tesis se ha realizado una primera aplicación a la Península Ibérica, para comprobar su utilidad a la hora de estimar variables de interés forestal. En un primer paso se ha analizado la variabilidad temporal que se produce en los datos, debido a los cambios en la geometría de captación, es decir, debido a la posición relativa de sensores y fuente de iluminación, que en este caso es el Sol. Se ha comprobado cómo la anisotropía es mayor desde finales de otoño hasta principios de primavera debido a que la posición del Sol es más cercana al plano de los sensores. También se ha comprobado que los valores máximo y mínimo se van desplazando temporalmente entre el centro y el extremo angular. En la caracterización multiangular de ocupaciones del suelo de CORINE Land Cover que se ha realizado, se puede observar cómo la forma predominante en las imágenes con el Sol más alto es convexa con un máximo en la cámara más cercana a la fuente de iluminación. Sin embargo, cuando el Sol se encuentra mucho más bajo, ese máximo es muy externo. Por otra parte, los datos obtenidos en verano son mucho más variables para cada ocupación que los de noviembre, posiblemente debido al aumento proporcional de las zonas en sombra. Para comprobar si la información multiangular tiene algún efecto en la obtención de imágenes clasificadas según ocupación y usos del suelo, se han realizado una serie de clasificaciones variando la información utilizada, desde sólo multiespectral, a multiangular y multiespectral. Los resultados muestran que, mientras para las clasificaciones más genéricas la información multiangular proporciona los peores resultados, a medida que se amplían el número de clases a obtener tal información mejora a lo obtenido únicamente con información multiespectral. Por otra parte, se ha realizado una estimación de variables cuantitativas como la fracción de cabida cubierta (Fcc) y la altura de la vegetación a partir de información proporcionada por MISR a diferentes resoluciones. En el valle de Alcudia (Ciudad Real) se ha estimado la fracción de cabida cubierta del arbolado para un píxel de 275 m utilizando redes neuronales. Los resultados muestran que utilizar información multiespectral y multiangular puede mejorar casi un 20% las estimaciones realizadas sólo con datos multiespectrales. Además, las relaciones obtenidas llegan al 0,7 de R con errores inferiores a un 10% en Fcc, siendo éstos mucho mejores que los obtenidos con el producto elaborado a partir de datos multiespectrales del sensor Moderate Resolution Imaging Spectroradiometer (MODIS), también a bordo de Terra, para la misma variable. Por último, se ha estimado la fracción de cabida cubierta y la altura efectiva de la vegetación para 700.000 ha de la provincia de Murcia, con una resolución de 1.100 m. Los resultados muestran la relación existente entre los datos espectrales y los multiangulares, obteniéndose coeficientes de Spearman del orden de 0,8 en el caso de la fracción de cabida cubierta de la vegetación, y de 0,4 en el caso de la altura efectiva. Las estimaciones de ambas variables con redes neuronales y diversas combinaciones de datos, arrojan resultados con R superiores a 0,85 para el caso del grado de cubierta vegetal, y 0,6 para la altura efectiva. Los parámetros multiangulares proporcionados en los productos elaborados con MISR a 1.100 m, no obtienen buenos resultados por sí mismos pero producen cierta mejora al incorporarlos a la información espectral. Los errores cuadráticos medios obtenidos son inferiores a 0,016 para la Fcc de la vegetación en tanto por uno, y 0,7 m para la altura efectiva de la misma. Regresiones geográficamente ponderadas muestran además que localmente se pueden obtener mejores resultados aún mejores, especialmente cuando hay una mayor variabilidad espacial de las variables estimadas. En resumen, la utilización de los datos proporcionados por MISR ofrece una prometedora vía de mejora de resultados en la media-baja resolución, tanto para la clasificación de imágenes como para la obtención de variables cuantitativas de la estructura de la vegetación. ABSTRACT Applications of remote sensing for monitoring what is happening on the land surface have been multiplied and refined with the launch of new sensors by different Space Agencies. The need of having up to date and spatially homogeneous data, has led to the development of new programs such as the Earth Observing System (EOS) of the National Aeronautics and Space Administration (NASA). One of the sensors incorporating the flagship of that program, the TERRA satellite, is Multi-angle Imaging Spectroradiometer (MISR), designed to capture the multi-angle information of the Earth's surface. Since the 1970s, it was known that the reflectance of various land covers and land uses varied depending on the viewing and ilumination angles, so they are anisotropic. Such variation was also related to the three dimensional structure of such covers, so that one could take advantage of such a relationship to obtain information from that structure, beyond which spectral information could provide. The MISR sensor incorporates 9 cameras at different angles to capture 9 almost simultaneous images of the same point, allowing relatively reliable estimates of the anisotropic response of the Earth's surface. Several studies have shown that we can estimate variables related to the vegetation structure with the information provided by this sensor, so this thesis has made an initial application to the Iberian Peninsula, to check their usefulness in estimating forest variables of interest. In a first step we analyzed the temporal variability that occurs in the data, due to the changes in the acquisition geometry, i.e. the relative position of sensor and light source, which in this case is the Sun. It has been found that the anisotropy is greater from late fall through early spring due to the Sun's position closer to the plane of the sensors. It was also found that the maximum and minimum values are displaced temporarily between the center and the ends. In characterizing CORINE Land Covers that has been done, one could see how the predominant form in the images with the highest sun is convex with a maximum in the camera closer to the light source. However, when the sun is much lower, the maximum is external. Moreover, the data obtained for each land cover are much more variable in summer that in November, possibly due to the proportional increase in shadow areas. To check whether the information has any effect on multi-angle imaging classification of land cover and land use, a series of classifications have been produced changing the data used, from only multispectrally, to multi-angle and multispectral. The results show that while for the most generic classifications multi-angle information is the worst, as there are extended the number of classes to obtain such information it improves the results. On the other hand, an estimate was made of quantitative variables such as canopy cover and vegetation height using information provided by MISR at different resolutions. In the valley of Alcudia (Ciudad Real), we estimated the canopy cover of trees for a pixel of 275 m by using neural networks. The results showed that using multispectral and multiangle information can improve by almost 20% the estimates that only used multispectral data. Furthermore, the relationships obtained reached an R coefficient of 0.7 with errors below 10% in canopy cover, which is much better result than the one obtained using data from the Moderate Resolution Imaging Spectroradiometer (MODIS), also onboard Terra, for the same variable. Finally we estimated the canopy cover and the effective height of the vegetation for 700,000 hectares in the province of Murcia, with a spatial resolution of 1,100 m. The results show a relationship between the spectral and the multi-angle data, and provide estimates of the canopy cover with a Spearman’s coefficient of 0.8 in the case of the vegetation canopy cover, and 0.4 in the case of the effective height. The estimates of both variables using neural networks and various combinations of data, yield results with an R coefficient greater than 0.85 for the case of the canopy cover, and 0.6 for the effective height. Multi-angle parameters provided in the products made from MISR at 1,100 m pixel size, did not produce good results from themselves but improved the results when included to the spectral information. The mean square errors were less than 0.016 for the canopy cover, and 0.7 m for the effective height. Geographically weighted regressions also showed that locally we can have even better results, especially when there is high spatial variability of estimated variables. In summary, the use of the data provided by MISR offers a promising way of improving remote sensing performance in the low-medium spatial resolution, both for image classification and for the estimation of quantitative variables of the vegetation structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O entendimento da comunidade fitoplanctônica em sistemas instáveis, como por exemplo reservatórios, necessita conhecimento de escalas de variabilidade. Com base nisso, um estudo sobre a heterogeneidade espacial e variabilidade temporal de dois reservatórios com diferentes graus de trofia, no Estado de São Paulo foi realizado em 20 estações no reservatório de Salto Grande e em 19 no reservatório do Lobo, em 3 dias consecutivos, em quatro períodos: outubro de 1999, janeiro, abril e junho e julho de 2000. Para tanto foram determinadas as concentrações de nutrientes totais e dissolvidos, material em suspensão, carbono inorgânico, clorofila a, biomassa, densidade, composição e produtividade primária da comunidade fitoplanctônica e os perfis de oxigênio dissolvido, temperatura, pH e condutividade. Os dois reservatórios tiveram estruturas espaciais semelhantes com a formação de três zonas distintas. A zona de rio, misturada, com menor penetração de luz e maior concentração de nutrientes, a zona de transição, e a zona lacustre, mais estratificada, com maior penetração de luz e menor concentração de nutrientes. Apesar dessa compartimentalização a heterogeneidade espacial no reservatório de Salto Grande foi maior que no reservatório do Lobo, sobretudo em função do gradiente longitudinal de nutrientes e luz. A variabilidade diária (3 dias) nos dois reservatórios não foi significativa na determinação da comunidade fitoplanctônica. A escala de variabilidade sazonal, nos dois reservatórios, foi determinada, principalmente pela variação nos padrões de estratificação e mistura sendo, assim, determinante na composição da comunidade fitoplanctônica. Essa influência foi mais evidente no reservatório do Lobo. A variação temporal e heterogeneidade espacial das mais abundantes espécies e grupos taxonômicos da comunidade fitoplanctônica, (Microcystis aeruginosa, Anabaena crassa e Anabaena circinalis em Salto Grande e Aphanocapsa delicatissima, Coelastrum reticulatum e Aulacoseira granulata no Lobo) nos dois reservatórios foram determinados pelos complexos processos de estratificação e mistura e da disponibilidade de luz. Os resultados obtidos são importantes para o entendimento da variabilidade ambiental de reservatórios tropicais e no planejamento de amostragens que visem o gerenciamento desses sistemas.