926 resultados para sol-gel method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we obtained microporous and mesoporous silica membranes by sol-gel processing. Tetraethylortosilicate (TEOS) was used as precursor. Nitric acid was used as catalyst. In order to study the affect of N,N-dimethylformamide (NDF) as drying additive, we used a molar ratio TEOS/NDF of 1/3. The performance of N,N-dimethylformamide was evaluated through monolithicity measurements. The structural evolutions occurring during the sol-gel transition and in the interconnected network of the membranes during thermal treatment were monitored by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses and nitrogen sorption. We noted that in the presence of N,N-dimethylformamide, polymerization goes through a temporary stabilization of oligomers. The Si-O(H) bonds are stronger and belong to a more cross-linked structure for the N,N-dimethylformamide containing sol. The membranes obtained in the presence of N,N-dimethylformamide have larger surface area and its pore structure is in the range of mesoporous. The membranes obtained without additive have pore structure in the range of microporous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titania powders were synthesized by a sol-gel process using titanium tetrabutoxide as precursor. The syntheses were performed in water or in solutions of dimethylformamide (dmf) or dimethylsulfoxide (dmso). It is demonstrated, by X-ray diffraction patterns of the synthesized powders, that the samples obtained in dmf or dmso solutions are crystalline (anatase phase) with some minor amount of brookite phase, whereas the sample synthesized in water is amorphous. The anatase phase can be obtained independently of any previous or further treatment of the synthesized powder, such as hydrothermal or heat treatment, providing a new, simple, quick and inexpensive route to synthesize anatase powders. From the peak broadening of the anatase (101) diffraction, the crystallite sizes were calculated as 6 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview about the role of alkoxides in the most recent uses of the sol-gel process in the synthesis of new materials is presented. Special attention is focused on the uses of silicon, aluminum, zirconium and titanium alkoxides. This review shows that the alkoxides enable the synthesis of new matrices with controlled surface area, acidity and porosity, as well as some unusual properties. The property associated with the solubility of metal alkoxides opens enormous possibilities of combining them for the synthesis films of powders with a very large range of metal compositions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usually, the concepts of the Sol-Gel technique are not applied in experimental chemistry courses. This work presents a feasible experiment for chemistry instruction, which involves the synthesis of luminescent materials - Zn2SiO4, with and without Mn2+ as a dopant - by the Sol-Gel technique. The obtained materials were analyzed by scanning electron microscopy, X-Ray diffraction, IR spectroscopy and luminescence measures by UV-vis spectroscopy. The results allow the students to confirm the luminescent properties of the zinc orthosilicate luminophores as well as the structural features expected from literature data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents biochemical characterization of a lipase from a new strain of Bacillus sp. ITP-001, immobilized using a sol gel process (IB). The results from the biochemical characterization of IB showed increased activity for hydrolysis, with 526.63 U g-1 at pH 5.0 and 80 ºC, and thermal stability at 37 ºC. Enzymatic activity was stimulated by ions such as EDTA, Fe+3, Mn+2, Zn+2, and Ca+2, and in various organic solvents. Kinetic parameters obtained for the IB were Km = 14.62 mM, and Vmax = 0.102 mM min-1 g-1. The results of biochemical characterization revealed the improved catalytic properties of IB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The filling of capillaries via the sol-gel process is growing. Therefore, this technical note focuses on disseminating knowledge acquired in the Group of Analytical Chemistry and Chemometrics over seven years working with monolithic stationary phase preparation in fused silica capillaries. We believe that the detailed information presented in this technical note concerning the construction of an alternative high pressurization device, used to fill capillary columns via the sol-gel process, which has promising potential for applications involving capillary electrochromatography and liquid chromatography in nano scale, may be enlightening and motivating for groups interested in developing research activities within this theme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Híbridos siloxano-PMMA apresentando ligações covalentes entre as fases orgânica e inorgânica foram preparados a partir do processo sol-gel. O efeito da fração em massa de fase siloxano no mecanismo de secagem dos géis a 50ºC foi estudado através de medidas de perda de massa e retração linear. Pode-se distinguir os três períodos clássicos de secagem já observados em géis inorgânicos. A duração do primeiro período (estágio de velocidade constante) aumenta com o teor de polímero, o que pode ser explicado pelo menor tamanho dos poros presentes nos géis contendo concentrações elevadas de PMMA. Com o aumento da concentração da fase siloxano observou-se o aumento da perda de massa total e da retração linear final do material após o terceiro período de secagem. Este comportamento deve-se ao aumento do teor de água livre resultante da policondensação das espécies siliciosas nestes sistemas, o que leva a uma maior plasticidade do material. O volume poroso do material aumenta com o teor de fase siloxano, o que é consistente com a perda de massa observada durante a secagem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hidroxiapatita [Ca10(PO4)6(OH)2, HA] foi sintetizada utilizando-se a rota sol-gel partindo-se de ácido fosfórico e nitrato de cálcio como precursores de cálcio e fósforo, respectivamente e como solvente utilizou-se o metanol na preparação do sol que posteriormente será utilizado na obtenção de recobrimentos de hidroxiapatita sobre substratos de ligas de titânio. O sol permaneceu estável e não ocorreu gelatinização em temperatura ambiente durante sete dias. O sol transformou-se em um gel branco somente após a remoção do solvente a 100ºC. O produto assim obtido foi calcinado em 300°C, 500°C e 700°C e caracterizou-se por DRX, FT-IR, MEV/EDS e TGA/DSC. As fases de HA sintetizada tornaram-se estáveis sem sub-produtos a 700°C. A difração de raios X mostrou que a estrutura apatita é aparente em 300°C. O tamanho do cristal e o teor de HA aumentaram com o aumento da temperatura de calcinação. A análise por MEV mostrou a presença de poros que são importantes para aplicações biomédicas, favorecendo a adesão entre o tecido ósseo neoformado e a apatita sintética, ou seja, osseointegração.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho descreve um método de modificação do TiO2 obtido pelo processo sol-gel, através da adição de óxido de cério no momento da síntese. O material foi caracterizado por adsorção de N2 a 77K. A adição de CeO2 aumenta a área específica do catalisador em 135% e reduz o diâmetro de poros. A atividade catalítica desses materiais foi verificada frente à reação de foto-decomposição do hidrogenoftalato de potássio e comparada ao TiO2 comercial P25 da Degussa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the work reported here, optically clear, ultrathin TEOS derived sol-gel slides which were suitable for studies of tryptophan (Trp) fluorescence from entrapped proteins were prepared by the sol-gel technique and characterized. The monitoring of intrinsic protein fluorescence provided information about the structure and environment of the entrapped protein, and about the kinetics of the interaction between the entrapped protein and extemal reagents. Initial studies concentrated on the single Trp protein monellin which was entrapped into the sol-gel matrices. Two types of sol-gel slides, termed "wet aged", in which the gels were aged in buffer and "dry-aged", in which the gels were aged in air , were studied in order to compare the effect of the sol-gel matrix on the structure of the protein at different aging stages. Fluorescence results suggested that the mobility of solvent inside the slides was substantially reduced. The interaction of the entrapped protein with both neutral and charged species was examined and indicated response times on the order of minutes. In the case of the neutral species the kinetics were diffusion limited in solution, but were best described by a sum of first order rate constants when the reactions occurred in the glass matrix. For charged species, interactions between the analytes and the negatively charged glass matrix caused the reaction kinetics to become complex, with the overall reaction rate depending on both the type of aging and the charge on the analyte. The stability and conformational flexibility of the entrapped monellin were also studied. These studies indicated that the encapsulation of monellin into dry-aged monoliths caused the thermal unfolding transition to broaden and shift upward by 14°C, and causedthe long-term stability to improve by 12-fold (compared to solution). Chemical stability studies also showed a broader transition for the unfolding of the protein in dry-aged monoliths, and suggested that the protein was present in a distribution of environments. Results indicated that the entrapped proteins had a smaller range of conformational motions compared to proteins in solution, and that entrapped proteins were not able to unfold completely. The restriction of conformational motion, along with the increased structural order of the internal environment of the gels, likely resulted in the improvements in themial and long-term stability that were observed. A second protein which was also studied in this work is the metal binding protein rat oncomodulin. Initially, the unfolding behavior of this protein in aqueous solution was examined. Several single tryptophan mutants of the metal-binding protein rat oncomodulin (OM) were examined; F102W, Y57W, Y65W and the engineered protein CDOM33 which had all 12 residues of the CD loop replaced with a higher affinity binding loop. Both the thermal and the chemical stability were improved upon binding of metal ions with the order apo < Ca^^ < Tb^"^. During thermal denaturation, the transition midpoints (Tun) of Y65W appeared to be the lowest, followed by Y57W and F102W. The placement of the Trp residue in the F-helix in F102W apparently made the protein slightly more thermostable, although the fluorescence response was readily affected by chemical denaturants, which probably acted through the disruption of hydrogen bonds at the Cterminal end of the F-helix. Under both thermal and chemical denaturation, the engineered protein showed the highest stability. This indicated that increasing the number of metal ligating oxygens in the binding site, either by using a metal ion with a higher coordinatenumber (i.e. Tb^*) which binds more carboxylate ligands, or by providing more ligating groups, as in the CDOM33 replacement, produces notable improvements in protein stability. Y57W and CE)OM33 OM were chosen for further studies when encapsulated into sol-gel derived matrices. The kinetics of interaction of terbium with the entrapped proteins, the ability of the entrapped protein to binding terbium, as well as thermal stability of these two entrapped protein were compared with different levels of Ca^"*^ present in the matrix and in solution. Results suggested that for both of the proteins, the response time and the ability to bind terbium could be adjusted by adding excess calcium to the matrix before gelation. However, the less stable protein Y57W only retained at most 45% of its binding ability in solution while the more stable protein CDOM33 was able to retain 100% binding ability. Themially induced denaturation also suggested that CDOM33 showed similar stability to the protein in solution while Y57W was destabilized. All these results suggested that "hard" proteins (i.e. very stable) can easily survive the sol-gel encapsulation process, but "soft" proteins with lower thermodynamic stability may not be able to withstand the sol-gel process. However, it is possible to control many parameters in order to successfully entrap biological molecules into the sol-gel matrices with maxunum retention of activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful development of stable biosensors incorporating entrapped proteins suffers from poor understanding of the properties of the entrapped biomolecules. This thesis reports on the use of fluorescence spectroscopy to investigate the properties of proteins entrapped in sol-gel processed silicate materials. Two different single tryptophan (Trp) proteins were investigated in this thesis, the Ca2 + binding protein cod III parvalbumin (C3P) and the salicylate binding protein human serum albumin (HSA). Furthermore, the reactive single cysteine (Cys) residue within C3P and HSA were labelled with the probes iodoacetoxynitrobenzoxadiazole (C3P) and acrylodan (C3P and HSA) to further examine the structure, stability and function of the free and entrapped proteins. The results show that both C3P and HSA can be successfully entrapped into sol-gelderived matrices with retention of function and conformational flexibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminosilicate catalysts containing supported ZnCl2 and metal fluoride salts have been prepared using a sol-gel based route, tested and characterized. The activities of these ZnCl2 + metal fluoride catalysts, while greater than "Clayzic" (ZnCI2 supported on montmorillonite KIO) are not as good as supported ZnCl2 only supported on aluminosilicate. Alumina supports have also been prepared via a sol-gel route using various chemical additives to generate a mesoporous structure, loaded with ZnCl2 and tested for activity. The activities for these alumina-supported catalysts are also significantly higher than that of "Clayzic", an effective Friedel-Crafts catalyst. Characterizations of these two types of catalysts were done by magic angle spinning (MAS) NMR, diffuse reflectance infrared (DRIFT) spectroscopy and additionally for the alumina nitrogen adsorption studies were done. Supported aluminum trichloride was also investigated as an alternative to the traditional use of aluminum trichloride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Ingeniería Cerámica) U.A.N.L.