974 resultados para soil water dynamics
Resumo:
Currently, the use of herbicides is essential in a practical and common in agricultural areas, but efficiency of these herbicides can be compromised when applied on plants that thrive in water deficit conditions, due to low uptake and translocation of the product. Therefore, the aim of this study was to compare the efficiency of control ACCase inhibiting herbicides applied post-emergence in plants of Eleusine indica under different soil water contents. The experiment was conducted in a greenhouse and the experimental design was completely randomized design with four replications, consisting of a 9x4 factorial, with the combination of three soil water potentials (-0.03, -0.07 and -1.5 MPa) three herbicides (fluazifop-p -butyl, haloxyfop-methyl and sethoxydim + oil) and four doses (0, 25, 50, and 100 % of the recommended dose). Herbicide application was made in plants in vegetative stage 2-3 tillers. The soil water potential was initiated in the development stage of two leaves, and the water was supplemented until the soil reaches the potential of -0.01 MPa, when it came to minimum pre-determined for each water management. The physiological parameters evaluated were: photosynthetic rate, stomatal conductance, transpiration leaf temperature and plant dry mass. The visual assessments of phytotoxicity were performed at 7 and 14 days after application. The herbicides behaved in different ways according to the used water management. In severe water stress conditions (soil moisture at 8%) only fluazifop-p-butyl herbicide achieved satisfactory control (> 90%) in E. indica plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study examined effects of soil freezing on N dynamics in soil along an N processing gradient within a mixed hardwood dominated watershed at Fernow Experimental Forest, West Virginia. Sites were designated as LN (low rates of N processing), ML (moderately low), MH (moderately high), and HN (high). Soils underwent three 7-day freezing treatments (0, –20, or –80 °C) in the laboratory. Responses varied between temperature treatments and along the gradient. Initial effects differed among freezing treatments for net N mineralization, but not nitrification, in soils across the gradient, generally maintained at LN < ML ≤ MH < HN for all treatments. Net N mineralization potential was higher following freezing at –20 and –80 °C than control; all were higher than at 0 °C. Net nitrification potential exhibited similar patterns. LN was an exception, with net nitrification low regardless of treatment. Freezing response of N mineralization differed greatly from that of nitrification, suggesting that soil freezing may decouple two processes of the soil N cycle that are otherwise tightly linked at our site. Results also suggest that soil freezing at temperatures commonly experienced at this site can further increase net nitrification in soils already exhibiting high nitrification from N saturation.
Resumo:
Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.
Resumo:
Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope (d18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection–dispersion model using d18O values of precipitation (ranging from _24.7 to _2.9‰) as input data to simulate the d18O profiles of soil water. The variability of d18O values with depth within each soil profile and a comparison of the simulated and measured d18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of d18O in precipitation was found in several profiles, ranging from _14.5 to _4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46_. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated d18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The d18O value of snow (_17.7 ± 1.9‰) was absent in several measured d18O profiles but present in the respective simulated d18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied methods proved to be a fast and promising tool to obtain time-integrated information on soil water flow paths at the hillslope scale in steep subalpine slopes.
Resumo:
This paper analyzes the hydrological processes and the impact of soil properties and land use on these processes in tropical headwater catchment in the sub-humid part of Benin (West-Africa), the Aguima catchment. The presented study is integrated in the GLOWA IMPETUS project, which investigates the effects of global change on the water cycle and water availability on a regional scale in Morocco and Benin. The lack of field investigations concerning soil and surface hydrology in the Benin research area necessitates detailed field measurements including measurements of discharge, soil water dynamics, soil physical properties etc. on the local scale in order to understand the dominant runoff generation processes and its influencing factors. This is a pre-requisite to be able to forecast the effects which global change has on hydrological processes and water availability in the region. The paper gives an overview over the hydrologic measuring concept of the IMPETUS-Benin project focusing on measurements concerning the soil saturated conductivity ksat and discharge behaviour of two different sub-catchment of the Aguima catchment. The results of ksat measurements revealed that interflow is the dominant runoff process on the hillslopes of the investigated catchment. Concerning the impact of land use on the hydrological processes infiltration experiments showed that infiltration rates were reduced on cultivated land compared to natural land cover. This results in significant differences in runoff behaviour and runoff ratios while comparing natural and agricultural used catchments.
Resumo:
The approach developed by Fuhrer in 1995 to estimate wheat yield losses induced by ozone and modulated by the soil water content (SWC) was applied to the data on Catalonian wheat yields. The aim of our work was to apply this approach and adjust it to Mediterranean environmental conditions by means of the necessary corrections. The main objective pursued was to prove the importance of soil water availability in the estimation of relative wheat yield losses as a factor that modifies the effects of tropospheric ozone on wheat, and to develop the algorithms required for the estimation of relative yield losses, adapted to the Mediterranean environmental conditions. The results show that this is an easy way to estimate relative yield losses just using meteorological data, without using ozone fluxes, which are much more difficult to calculate. Soil water availability is very important as a modulating factor of the effects of ozone on wheat; when soil water availability decreases, almost twice the amount of accumulated exposure to ozone is required to induce the same percentage of yield loss as in years when soil water availability is high.
Resumo:
The aim of this study was to evaluate the effects of row orien¬tation on vine and soil water status in an irrigated vineyard. The trial was developed during 2006, 2007 and 2008, in the South East region of Madrid (Spain) on 5-year old Cabernet franc grapevines (Vitis vinifera L.) grafted onto 140Ru. Plant spacing was 2.5 m x 1.5 m and vines were trained to a VSP. Four orientations were stu¬died: North-South (N-S), East-West (E-W), Northeast-Southwest (N+45) and North-South +20o (N+20). Irrigation (0.4•ET0) started when shoot growth stopped. Soil water availability was measured using a TDR technique with forty buried probes. Row orientation did not have any effect on water consumption in the vineyard. At maturity, leaf water potential was measured at predawn, early mor¬ning, midday and 14:00 solar time, on both canopy sides - sun and shade – ; the early morning measurement was the one that better differentiated treatments. Leaf water potential was a good indica¬tor of plant water status. Differences between (N-S and E-W) and (N+20 and N+45) treatments were obtained both on sun and shade canopy sides, N+20 and N+45 having lower leaf water potentials then drier leaves. The water stress integral shows that N-S and E-W reach the end of maturation with a greater level of hydration than N+45 and N+20. As a whole, N+45 and N+20 orientations, without affecting too much the soil available water content, induce regularly more water stress to the vine at some periods, probably due to an higher sunlight interception in early morning which makes water limitation for the vine more early and thus more severe during the day.
Resumo:
Water balance simulation in cropping systems is a very useful tool to study how water can be used efficiently. However this requires that models simulate an accurate water balance. Comparing model results with field observations will provide information on the performance of the models. The objective of this study was to test the performance of DSSAT model in simulating the water balance by comparing the simulations with observed measurements. The soil water balance in DSSAT uses a one dimensional ?tipping bucket? soil water balance approach where available soil water is determined by the drained upper limit (DUL), lower limit (LL) and saturated water content (SAT). A continuous weighing lysimeter was used to get the observed values of drainage and evapotranspiration (ET). An automated agrometeorological weather station close to the lisymeter was also used to record the climatic data. The model simulated accurately the soil water content after the optimization of the soil parameters. However it was found the inability of the model to capture small changes in daily drainage and ET. For that reason simulated cumulative values had larger errors as the time passed by. These results suggested the need to compare outputs of DSSAT and some hydrological model that simulates soil water movement with a more mechanistic approach. The comparison of the two models will allow us to find which mechanism can be modified or incorporated in DSSAT model to improve the simulations.
Resumo:
The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.
Resumo:
The Actively Heated Fiber Optic (AHFO) method is shown to be capable of measuring soil water content several times per hour at 0.25 m spacing along cables of multiple kilometers in length. AHFO is based on distributed temperature sensing (DTS) observation of the heating and cooling of a buried fiber-optic cable resulting from an electrical impulse of energy delivered from the steel cable jacket. The results presented were collected from 750 m of cable buried in three 240 m colocated transects at 30, 60, and 90 cm depths in an agricultural field under center pivot irrigation. The calibration curve relating soil water content to the thermal response of the soil to a heat pulse of 10 W m−1 for 1 min duration was developed in the lab. This calibration was found applicable to the 30 and 60 cm depth cables, while the 90 cm depth cable illustrated the challenges presented by soil heterogeneity for this technique. This method was used to map with high resolution the variability of soil water content and fluxes induced by the nonuniformity of water application at the surface.