970 resultados para soil dissolved C pool


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated aspects of the reproductive ecology of Ochna serrulata (Hochst.) Walp., an invasive plant in eastern Australia. O. serrulata drupes were similar in size to fleshy fruits of other local invasive plants, but showed some distinct differences in quality, with a very high pulp lipid content (32.8% of dry weight), and little sugar and water. Seeds were dispersed by figbirds, Sphecotheres viridis Vieillot, a locally abundant frugivore, and comprised between 10 and 50% of all non-Ficus spp. fruit consumed during October and November. The rate of removal of O. serrulata drupes was greater in bushland than suburban habitats, indicating that control in bushland habitats should be a priority, but also that suburban habitats are likely to act as significant seed sources for reinvasion of bushland. Germination occurred under all seed-processing treatments (with and without pulp, and figbird gut passage), suggesting that although frugivores are important for dispersal, they are not essential for germination. Recruitment of buried and surface-sown seed differed between greenhouse and field experiments, with minimal recruitment of surface-sown seed in the field. Seed persistence was low, particularly under field conditions, with 0.75% seed viability after 6 months and 0% at 12 months. This provides an opportunity to target control efforts in south-eastern Queensland in spring before fruit set, when there is predicted to be few viable seeds in the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertical uplift resistance of two interfering rigid strip plate anchors embedded horizontally at the same level in clay has been examined. The lower and upper bound theorems of the limit analysis in combination with finite-elements and linear optimization have been employed to compute the failure load in a bound form. The analysis is meant for an undrained condition and it incorporates the increase of cohesion with depth. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (eta c gamma) resulting from the combined components of soil cohesion (c) and soil unit weight (gamma), has been computed for different values of embedment ratio (H/B), the rate of linear increase of cohesion with depth (m) and normalized unit weight (gamma H/c). The magnitude of eta c gamma has been found to reduce continuously with a decrease in the spacing between the anchors, and the uplift resistance becomes minimum for S/B=0. It has been noted that the critical spacing between the anchors required to eliminate the interference effect increases continuously with (1) an increase in H/B, and (2) a decrease in m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

自工业革命以来,大气的C02浓度以前所未有的速度增加,已经由280μmol mol-1升高到了360μmol mol-l。据预测,到下个世纪中/末期,C02浓度将为目前的二倍。C02浓度升高及其引起的全球气候变化必将影响到植物的生长发育,进而对整个生态系统产生巨大影响。因此,有关C02浓度升高对各类生态系统的影响的研究引起了广泛关注,成为近年来的研究热点。早期的研究多数集中于考察C02浓度升高对植物个体水平生长发育的影响。然而,高C02对植物的效应严重依赖于具体物种和具体环境条件,使得基于由短期盆栽实验获得的研究结果不能够有效地预测自然生态系统的行为。因此,长期、原位处理实验越来越受到重视。由于原位研究的难度较大,目前这方面的研究还不是很多。有限研究结果显示,由于生境条件和种间关系方面的巨大差异,自然生态系统对C02浓度升高的反应迥异。 草原生态系统由于C02浓度控制上比较容易实现,而且其物质循环相对较快,因而一直是C02富集实验研究最多的一类植被,生态系统水平的研究更是如此。然而涉及的区域和草原类型并不多,不足以进行可靠预测。目前,关于C02升高效应,研究比较系统的草原生态系统主要集中在:美国Kansas的高草草原、美国California的一年生草原、瑞士西北部的石灰质草原、美国Colorado的矮草草原和一些牧场。我国总土地面积的40%为草地,类型丰富,然而相关研究不多,尤其是对自然生态系统的原位研究几乎为空白。 为揭示C02浓度升高对羊草草原生产力和碳平衡的效应,我们在中国科学院内蒙古草原生态系统定位研究站的永久羊草样地开展了两年的C02倍增实验(2001,2002)。在羊草样地选择相对均匀地段设置12个开顶式气室(直径1.8m),每个气室内分成4个小样方(0.5m×0.5m),其中6个气室在生长季给予加倍C02处理(约600μmol mol-l),另6个气室不补充C02(约300μmol moI-l)。地上部分用收割法取样,分种记录数量、高度和重量等指标,地下部分取样用环刀法。用Li-cor6400光合系统测定群落光合和呼吸速率。野外实验结束后,统一分析植物和土壤样品中的C、N等元素含量。另外,在内蒙古草原站院内设置了两组桶培实验,一组是取自羊草样地的带苗原状土,一组是取自羊草样地的混匀土,种上冰草(Agropyron cristatum)、紫花苜蓿(Medicago sativa)和无芒雀麦(Bromus inermis)的种子。2组桶培实验分别用两个水分梯度和两个C02梯度处理。水分处理分别为:浇水处理——每4天浇lOOOml水,相当于平均降雨量的160%;干旱处理——持续干旱,适时补水以保持植物不萎蔫,共浇水4000ml水。C02处理和取样方法与样地原位实验相同。主要研究结果和结论如下: 1)两年的C02加倍处理没有使羊草草原的生物量、植物种和功能型组成发生显著改变,桶培实验中,浇水处理显著促进了植物生长,原状土植物、种子苗实验的冰草和无芒雀麦对C02加倍处理同样不敏感,而种子苗实验的豆科植物紫花苜蓿在C02加倍处理下生物量显著提高。以上结果显示,由于水分和养分(特别是N)的限制,以及优势植物对C02的相对不敏感,C02浓度升高对羊草草原地上生物量和结构的效应相对不大。 2)羊草草原的根垂直分布在加倍C02条件下发生显著改变,但根生物量对C02加倍处 理相对不敏感。在4次取样中只有一次对C02加倍处理表现出显著变化,根长的变化与根生物量的变化不完全一致,根的比根长在加倍C02条件下增加。根垂直分布的变化趋势与降雨的时间分布相适应,干旱少雨时期C02使下层根量增加,多雨时期C02则使上层根量增加。以上结果显示,根的空间分布比根生物量对C02加倍处理更敏感。水分是根空间分布变化的驱动因子,加倍C02条件下,根空间分布的变化趋势倾向于优化对水分的充分利用。 3)加倍C02处理使羊草草原的群落光合速率显著提高,群落呼吸速率显著降低,因而使群落碳净输入量增加。土壤碳贮量占羊草草原碳总贮量的70%以上,碳总贮量及其组分(包括地上碳贮量、根碳贮量、土壤碳贮量)在两个C02浓度处理之问均没有显著差异。另外,加倍C02处理使羊草草原群落及其优势植物羊草的c:N比增加。以上结果显示,在加倍C02条件下羊草草原的碳净输入量增加,这意味着在未来高 C02条件F,羊草草原将作为碳汇对大气C02起反馈调节作用。其碳贮量对加倍C02 处理的不敏感与许多以前的研究结果相似,一般认为是由于土壤碳贮量本底太大, 掩盖了C02效应,这还有待于更长期原位实验的证实。羊草草原群落c:N比在高C02 浓度下的变化将影响凋落物降解、N素循环和动植物营养关系等,进而对生态系统 功能产生深远影响。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用中国科学院长武农田生态试验站的长期田间试验(1984年2~007年),研究了小麦产量,耕层有机碳变化,评价了土壤管理和气候因素对土壤有机碳(Soil organic C,SOC)变化的影响。研究涉及6个处理:休闲地(F);不施肥(CK);有机肥(M);氮肥(N);氮、磷肥(NP)和氮、磷、有机肥(NPM)处理。结果表明,施肥可以显著提高作物产量和SOC积累,CK、M、N、NP、NPM处理平均产量依次为1.5、2.6、2.0、3.3、4.0 t/hm2,2007年F、CK、M、N、NP、NPM处理0—20 cm土层SOC积累量依次为-1.09、0.76、8.59、1.02、3.42和9.5 t/hm2。作物产量与SOC含量呈显著的正相关关系(r=0.80),有机碳输入量与SOC含量相关性更好(r=0.97),外源有机碳的输入也是提高SOC的重要措施。施肥措施对作物固碳和SOC影响存在显著(P<0.05)差异。土壤固碳速率(Y)与SOC输入量(X)符合线性方程Y=0.231X-0.0813(r=0.98)。施肥可以提高黄土高原半干旱地区土壤生产力和SOC的积累,且无机肥和有机肥配施效果最佳。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在黄土丘陵区选择从耕地、草地、灌木林到乔木林样地,不同样地内设立1m×1m(乔木10m×10m)的样方,分析样方内凋落物积累量、碳氮含量、土壤有机碳(SOC)和可溶性碳(DOC)含量变化。结果表明:天然草地、灌木林、乔木林凋落物积累量依次为5.3,12.1和32.4t.hm-2;但人工灌木林和乔木林的凋落物积累量分别为6.7和11.4t.hm-2,分别是天然灌木林和乔木林的1/2和1/3。随着植被的恢复,天然植被凋落物的C/N高于人工植被(刺槐林除外)。与耕地SOC(4.67g·kg-1)相比,天然灌木林地SOC提高5.9倍,人工灌木林地提高1.8倍;天然乔木林地提高8.0倍,而人工乔木林地仅提高4.0倍。凋落物积累量与0~20cm土层土壤有机碳存在显著线性相关关系(R2>0.83),但20cm以下线性相关关系不显著。凋落物积累量与0~10cm土壤可溶性碳含量存在显著线性相关关系(R2>0.893),与10~60cm土层线性相关关系不显著,与80~100cm土壤可溶性碳存在显著线性负相关关系。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

管理措施是影响土壤质量演变的重要因素。分析和讨论了5、101、5年苹果园耕层(0—20 cm)和0—200 cm土壤有机碳、全氮、全磷、有效磷和硝态氮含量及其影响因素。结果表明,5年、10年和15年的塬面苹果园表层土壤有机碳依次为7.5、6.7和6.7 g/kg;全氮依次为0.940、.85和0.83 g/kg;但土壤全磷和速效磷含量随着种植年限而增加,与5年苹果园相比,塬面10年苹果园土壤全磷、速效磷含量分别提高了11%、60%,并且磷素的变异性随年限而增加。坡地10年、15年和20年苹果园土壤有机碳依次为6.36、.2和6.5 g/kg,全氮依次为0.76、0.76和0.81 g/kg;与10年苹果园相比,15年苹果园土壤全磷、速效磷含量分别提高了20%、28%。土壤剖面0—80 cm内不同土地利用方式土壤碳、氮、磷含量随土层加深而降低,80 cm以下不同利用条件苹果园土壤碳、磷含量差异不大,氮素含量在100 cm土层下随苹果园种植年限增加而增加。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

土壤微生物(Soil microbes)是生态系统的重要组成部分,它参与土壤中复杂有机物质的分解和再合成,也参与C、N、S、P等的循环。土壤酶(Soil enzyme)是土壤中具有生物活性的蛋白质,它与微生物一起推动着土壤的生物化学过程,并在树木营养物质的转化中起着重要的作用。鉴于土壤微生物和土壤酶对环境变化的敏感性,它们在CO2浓度和温度升高时的反应将在很大程度上影响森林生态系统的结构和功能。因此,要全面评价大气CO2浓度和温度升高对整个生态系统的影响,有必要对CO2浓度和温度升高条件下的土壤微生物的反应进行深入的研究与探讨。本文应用自控、封闭、独立的生长室系统,研究了川西亚高山岷江冷杉(Abies faxoniana)根际、非根际土壤微生物数量,红桦(Betula albosinensis)根际微生物数量以及根际、非根际土壤酶活性对大气CO2浓度(环境CO2浓度+350±25μmol·mol-1,EC)和温度(环境温度+2.0±0.5℃,ET)升高及两者同时升高(ECT)的响应。结果表明: 1) EC和ET显著增加岷江冷杉根际微生物数量,但不同微生物种类对EC和ET的反应有所差异。6、8和10月,岷江冷杉根际微生物数量与对照(CK)相比,EC处理的根际细菌数量分别增加了35%、164%和312%,ET处理增加了30%、115%和209%;EC和ET处理对根际放线菌和根际真菌数量影响不显著。ECT处理的根际放线菌数量分别增加了49%、50%和96%,根际真菌数量增加了151%、57%和48%;而ECT对根际细菌数量影响不显著。EC、ET和ECT处理对岷江冷杉土壤微生物总数的根际效应明显,其R/S值分别为1.93、1.37和1.46(CK的R/S值为0.81)。 2) 红桦根际微生物数量对EC、ET和ECT的响应不同。生长季节(5~10月),高密度的红桦根际细菌数量与CK 相比,EC的根际细菌数量分别增加28%、33%、423%、65%、43%和79%,而低密度的红桦根际细菌数量增加不显著。ET能显著增加根际细菌数量(7~10月),其中高密度的根际细菌数量分别增加了377%、107%、35%、22%,而低密度的根际细菌数量分别增加了27%、27%、64%、48%;ECT对两个密度水平下根际细菌数量均未产生有显著的影响。高、低密度的红桦根际放线菌和根际真菌数量与 CK 相比,EC显著增加了低密度的红桦根际放线菌数量,而对高密度的根际放线菌数量无显著影响;ET和ECT对高低密度的红桦根际放线菌数量均未产生显著影响。EC和ET对高低密度的根际真菌数量也无显著影响,而ECT却显著增加了高低密度的根际真菌数量。 3) EC、ET和ECT处理的低密度红桦根际微生物(细菌、放线菌和真菌)数量没有显著高于或低于高密度根际微生物数量,表明短期内密度对红桦根际微生物数量不产生影响。 4) 不同种类的氧化还原酶对EC、ET和ECT的响应不同。5~10月,EC的红桦根际过氧化氢酶活性是CK 的1.44、1.06、1.11、1.10、1.12和1.24倍,差异显著(6月除外);ET和ECT处理根际过氧化氢酶活性无显著增加。EC的红桦根际多酚氧化酶活性比CK显著增加;ET的根际多酚氧化酶活性显著高于CK(8月除外)。ECT的根际多酚氧化酶活性高于CK,差异不显著。EC的根际脱氢酶活性分别增加了46%、40%、133%、48%、17%和26%,差异显著。5~7月,ET和ECT的根际脱氢酶活性高于CK的脱氢酶活性,而8~9月则相反,差异性均不显著。 5) EC、ET和ECT对不同种类的水解酶的影响不同。EC能显著增加红桦根际脲酶活性,5~10月分别增加了29%、42%,、70%、67%、59%和57%。ET和ECT 对根际脲酶活性未产生显著影响。EC显著提高根际转化酶活性,5、6和9月EC的根际转化酶活性分别比CK高51%、42%和40%。5和10月,ET的根际转化酶活性低于CK,而其余月份却高于CK,但均具有显著性差异。ECT的根际转化酶活性与CK的根际转化酶活性有显著性差异(9月除外),5、6和7月的根际转化酶活性分别提高了94%、198%和67%。 6) 与CK相比,EC、ET和ECT的非根际土壤微生物数量以及非根际土壤酶活性均无显著提高。EC、ET和ECT的过氧化氢酶、脲酶的根际效应明显,而多酚氧化酶和脱氢酶根际效应不明显。EC和ECT的转化酶根际效应明显,而ET的转化酶根际效应不明显。 It is well known that atmospheric CO2 concentration and temperature are increasing as a consequence of human activities. In past decades, considerable efforts had been put into investigating the effects of climate change on processes of forest ecological system. In general, studies had been mainly focused on the effects of elevated atmospheric CO2 on plant physiology and development, litter quality, and soil microorganisms. Studies showed that there was variation in the responses of root development and below-ground processes to climate between different plant communities. Since the concentration of CO2 in soil was much higher (10~50 times) than in the atmosphere, increasing levels of atmospheric CO2 may not directly in fluence below ground processes. Betula albosinensis and Abies faxoniana, as the dominated tree species of subalpine dark coniferous forest in the western Sichuan province, which play an important role in the structure and function of this kind of forest ecosystem. In our study, effects of elevated atmospheric CO2 concentration (350±25μmol·mol-1), increased temperature (2.0±0.5℃) and both of the two on the number of rhizospheric microbe and rhizospheric enzyme activity were studied by the independent and enclosed-top chamber’ system under high-frigid conditions. Responses of rhizospheric bacteria, actinomycetes and fungi number of Betula albosinensis and Abies faxoniana under different densities(high density with 84 stems·m-2, low density with 28 stems·m-2 ), and rhizospheric enzyme activity of Betula albo-sinensis to elevated CO2 concentration and increased temperature were analyzed and discussed. The results are as the following, 1) In comparion with the control, the numbers of rhizospheric bacteria of Abies faxoniana were increased by 35%, 164% and 312% significantly in June, August and October respectively of EC, and were increased by 30%, 115% and 209% respectively of ET.However the effect of EC and ET on rhizospheric actinomycetes and fungi was not significant. The number of rhizospheric actinomycetes of ECT were increased significantly by 49%, 50% and 96% respectively, and the increment of rhizospheric fungi were 151%, 57% and 48% respectively .The effect of ECT on rhizospheric bacteria was not significant. Rhizospheric effect of soil microbe for all treatments was significant, with the R/S of 1.93, 1.27 and 1.46 for EC, ET and ECT, respectively. 2) Treatment EC improved the number of rhizospheric bacteria of Betula albosinensis under high density significantly in comparison with the control, over the growing season, the greatest increment of rhizospheric bacteria was from July. However, EC had no effect on the number of rhizospheric bacteria under low density. Except May and June, treatment ET improved the number of rhizospheric signifcantly. The effect of treatment ECT on the number of rhizospheric bacteria under different densities was not significant. Of treatment EC, the number of rhizospheric actinomycetes of Betula albosinensis under low density were increased significantly, however, treatment EC did not stimulate the number of rhizospheric actinomycetes under high density. Simultaneously, treatment ET and ECT did not stimulate the number of rhizospheric actinomycetes. Finally, in treatment ECT, the number of rhizospheric fungi under high density were increased significantly, however treatment EC and ET did not stimulate the number of rhizospheric fungi under different densities. 3) Of treatment EC, ET and ECT, the number of rhizospheric microbe of Betula albosinensis under low density were not more or fewer than that of microbe under hign density along the growing season, which showed that plant density had no effect on the nmber of microbe. 4) From May to October, 2004,rhizospheric catalase activity of Betula albosinensis of treatment EC was 1.44, 1.06, 1.11, 1.10, 1.12 and 1.24 times as treatment CK respectively, and the difference was statistically significant(except June). Treatment ET and ECT did not increase rhizospheric catalase activity significantly. In treatment EC, the rhizospheric pohyphenol oxidase activity was higher than treatment CK significantly. The rhizospheric pohyphenol oxidase activity of treatment ET was higher than CK significantly (except August). The rhizospheric pohyphenol oxidase activity of treatment ECT was higher than CK, but the difference was not statistically significant. Over the growing period, the rhizospheric dehydrogenase activity were increased 46%, 40%, 133%, 48%, 17% and 26% respectively by treatment EC, and the difference was statistically significant. From May to July, the rhizospheric dehydrogenase activity in treatment ET and ECT was higher than CK, but from August to October, the rhizospheric dehydrogenase activity was lower than CK, the difference was not significant. 5) Treatment EC increased rhizospheric urease activity significantly, from May to October, rhizospheric urease activity were increased 29%, 42%, 70%, 67%, 59% and 57% respectively by EC. Treatment ET and ECT had no effect on rhizospheric urease activity. Treatment EC improved rhizospheric invertase activity significantly, in May, June and September, the rhizospheric invertase activity of treatment EC were increased 51%, 42% and 40% in comparison with the control. Except May and October, the rhizospheric invertase activity of treatment ET was markly higher than CK. The rhizospheric invertase activity of treatment ECT was significantly different from CK (except September), in May, June and July treatment ECT increased rhizospheric invertase activity by 94%, 198% and 67% respectively. 6) In comparison with the control, treatment EC, ET, and ECT had no effect on the number of non-rhizospheric microbe and non-rhizospheric enzyme activity. Rhizospheric effect of catalase and urease for all treatments was significant, but rhizospheric effect of pohyphenol oxidase and dehydrogenase was not significant. Rhizospheric effect of invertase of EC and ECT was significant, but rhizospheric effect of invertase of ET was not significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

通过野外调查和室内分析,采用多元线性逐步回归和地理信息系统(GIS)相结合的方法,研究了黄土丘陵区燕沟流域表层(0~20 cm)土壤的有机碳密度、空间分布及其与土地利用类型和地形因子等的关系。结果表明,流域表层土壤有机碳密度平均为1.72 kg/m2,变幅为0.97~2.93 kg/m2;土地利用类型是影响土壤有机碳密度变化的首要因子;流域土壤有机碳密度呈镶嵌的树枝状和条带状空间分布格局,其高值斑块区与乔木林地和灌木林地的分布一致,中值斑块区与草地和川坝地的分布一致,低值斑块区与梯田、果园、坡耕地、疏林地和未成林地的分布一致。流域表层土壤有机碳总储量为76.81×103t。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

了解轮作与施肥对土壤有机碳的影响是建立持续发展措施的关键。【方法】以长期定位试验(1984~2002)中的10个典型处理为基础,分析了地上部生物量和耕层(0~20cm)土壤有机碳变化,探讨半干旱区轮作和施肥对0~20cm土层有机碳的影响,10个典型处理分别为休闲(F);冬小麦连作体系中的3个施肥处理:不施肥(W/W+CK)、化肥(W/W+NP)、化肥有机肥(W/W+NP-FYM);冬小麦-冬小麦+糜子-豌豆轮作体系中的3个施肥处理:不施肥(W/WM/P+CK)、化肥(W/WM/P+NP)、化肥有机肥(W/WM/P+NP-FYM)处理;1个冬小麦—冬小麦-红豆草轮作处理(W/W/S+NP);人工苜蓿中2个施肥处理:不施肥(A/A+CK)和化肥有机肥处理(A/A+NP-FYM)。【结果】冬小麦连作体系(W/W)中,不施肥处理(W/W+CK)的地上部生物量平均为3.3t·ha-1,化肥处理(W/W+NP)和化肥有机肥处理(W/W+NP-FYM)依次为7.5和11.2t·ha-1;冬小麦-冬小麦+糜子-豌豆轮作(W/WM/P)体系中,不施肥处理(W/WM/P+CK)地上部生物量平均3.1t·ha-1,W/WM...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

大气温室效应气体N2O、CO2增多与全球气温变暖有着密切的关系,由于农业活动导致的碳排放量占碳总排放量的25%,因此研究农田土壤有机碳的影响因素,对增加农田碳素固定和保持,减少由于不合理的土地使用而导致大量CO2的排放,维持农业和生物圈生态系统的可持续发展有着重要意义。本文分析了温度、水分、土地开垦、休闲和撩荒、耕翻、轮作、秸秆还田、肥料管理等对土壤有机碳的影响。减少翻耕次数,增加秸秆还田,优化氮、磷、钾等养分用量及配比,是提高农田,尤其是旱地农田土壤有机碳含量,培肥、改良土壤的重要途径。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

David Johnson, Colin D. Campbell, John A. Lee, Terry V. Callaghan and Dylan Gwynn-Jones (2002). Arctic microorganisms respond more to elevated UV-B radiation than CO2. Nature, 416 (6876) pp.82-83 Sponsorship: NERC / EU / Swedish Academy of Sciences RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic soils are widespread in Ireland and vulnerable to degradation via drainage for agriculture. The soil-landuse combination of pasture on organic soils may play a disproportionate role in regional C dynamics but is yet to receive study. Fluvial C fluxes and labile organic fractions were determined for two such sites at nested field (c.4 ha) and subcatchment scales (>40 ha); one relatively dry and nutrient rich, the other wetter and nutrient poor. Field scale flux from the nutrient poor site over 2 years was 38.9 ± 6.6 g C m−2 yr−1 with DIC > DOC > POC at 57, 32 and 11 % respectively, and 72 % DIC was comprised of above equilibrium CO2. At the nutrient rich site, which overlies limestone geology, field scale export over an individual year was 90.4 g C m−2 with DIC > DOC > POC at 49, 42 and 9 %, but with 90 % DIC as bicarbonate. By comparison with the nutrient poor site, the magnitude and composition of inorganic C exports from the nutrient rich site implied considerable export of soil-respiratory C as bicarbonate, and lower evasion losses due to carbonate system buffering. Labile DOC determined using dark incubations indicated small fractions (5–10 %) available for remineralisation over typical downstream transit times of days to weeks. These fractions are probably conservative as photolysis in the environment can increase the proportion of labile compounds via photocleavage and directly remineralise organic matter. This study demonstrates that monitoring at soil–water interfaces can aid capture of total landscape fluvial fluxes by precluding the need to incorporate prior C evasion, although rapid runoff responses at field scales can necessitate high resolution flow proportional, and hydrograph sampling to constrain uncertainty of flux estimates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2007