977 resultados para social evolution
Resumo:
v.61(1971)
Resumo:
The question of why some social systems have evolved close inbreeding is particularly intriguing given expected short- and long-term negative effects of this breeding system. Using social spiders as a case study, we quantitatively show that the potential costs of avoiding inbreeding through dispersal and solitary living could have outweighed the costs of inbreeding depression in the origin of inbred spider sociality. We further review the evidence that despite being favored in the short term, inbred spider sociality may constitute in the long run an evolutionary dead end. We also review other cases, such as the naked mole rats and some bark and ambrosia beetles, mites, psocids, thrips, parasitic ants, and termites, in which inbreeding and sociality are associated and the evidence for and against this breeding system being, in general, an evolutionary dead end.
Resumo:
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.
Resumo:
The capacity to learn to associate sensory perceptions with appropriate motor actions underlies the success of many animal species, from insects to humans. The evolutionary significance of learning has long been a subject of interest for evolutionary biologists who emphasize the bene¬fit yielded by learning under changing environmental conditions, where it is required to flexibly switch from one behavior to another. However, two unsolved questions are particularly impor¬tant for improving our knowledge of the evolutionary advantages provided by learning, and are addressed in the present work. First, because it is possible to learn the wrong behavior when a task is too complex, the learning rules and their underlying psychological characteristics that generate truly adaptive behavior must be identified with greater precision, and must be linked to the specific ecological problems faced by each species. A framework for predicting behavior from the definition of a learning rule is developed here. Learning rules capture cognitive features such as the tendency to explore, or the ability to infer rewards associated to unchosen actions. It is shown that these features interact in a non-intuitive way to generate adaptive behavior in social interactions where individuals affect each other's fitness. Such behavioral predictions are used in an evolutionary model to demonstrate that, surprisingly, simple trial-and-error learn¬ing is not always outcompeted by more computationally demanding inference-based learning, when population members interact in pairwise social interactions. A second question in the evolution of learning is its link with and relative advantage compared to other simpler forms of phenotypic plasticity. After providing a conceptual clarification on the distinction between genetically determined vs. learned responses to environmental stimuli, a new factor in the evo¬lution of learning is proposed: environmental complexity. A simple mathematical model shows that a measure of environmental complexity, the number of possible stimuli in one's environ¬ment, is critical for the evolution of learning. In conclusion, this work opens roads for modeling interactions between evolving species and their environment in order to predict how natural se¬lection shapes animals' cognitive abilities. - La capacité d'apprendre à associer des sensations perceptives à des actions motrices appropriées est sous-jacente au succès évolutif de nombreuses espèces, depuis les insectes jusqu'aux êtres hu¬mains. L'importance évolutive de l'apprentissage est depuis longtemps un sujet d'intérêt pour les biologistes de l'évolution, et ces derniers mettent l'accent sur le bénéfice de l'apprentissage lorsque les conditions environnementales sont changeantes, car dans ce cas il est nécessaire de passer de manière flexible d'un comportement à l'autre. Cependant, deux questions non résolues sont importantes afin d'améliorer notre savoir quant aux avantages évolutifs procurés par l'apprentissage. Premièrement, puisqu'il est possible d'apprendre un comportement incorrect quand une tâche est trop complexe, les règles d'apprentissage qui permettent d'atteindre un com¬portement réellement adaptatif doivent être identifiées avec une plus grande précision, et doivent être mises en relation avec les problèmes écologiques spécifiques rencontrés par chaque espèce. Un cadre théorique ayant pour but de prédire le comportement à partir de la définition d'une règle d'apprentissage est développé ici. Il est démontré que les caractéristiques cognitives, telles que la tendance à explorer ou la capacité d'inférer les récompenses liées à des actions non ex¬périmentées, interagissent de manière non-intuitive dans les interactions sociales pour produire des comportements adaptatifs. Ces prédictions comportementales sont utilisées dans un modèle évolutif afin de démontrer que, de manière surprenante, l'apprentissage simple par essai-et-erreur n'est pas toujours battu par l'apprentissage basé sur l'inférence qui est pourtant plus exigeant en puissance de calcul, lorsque les membres d'une population interagissent socialement par pair. Une deuxième question quant à l'évolution de l'apprentissage concerne son lien et son avantage relatif vis-à-vis d'autres formes plus simples de plasticité phénotypique. Après avoir clarifié la distinction entre réponses aux stimuli génétiquement déterminées ou apprises, un nouveau fac¬teur favorisant l'évolution de l'apprentissage est proposé : la complexité environnementale. Un modèle mathématique permet de montrer qu'une mesure de la complexité environnementale - le nombre de stimuli rencontrés dans l'environnement - a un rôle fondamental pour l'évolution de l'apprentissage. En conclusion, ce travail ouvre de nombreuses perspectives quant à la mo¬délisation des interactions entre les espèces en évolution et leur environnement, dans le but de comprendre comment la sélection naturelle façonne les capacités cognitives des animaux.
Resumo:
In colonies of social Hymenoptera (which include all ants, as well as some wasp and bee species), only queens reproduce whereas workers generally perform other tasks. The evolution of worker's reproductive altruism can be explained by kin selection, which states that workers can indirectly transmit copies of their genes by helping the reproduction of relatives. The relatedness between queens and workers may however be low, particularly when there are multiple queens per colony, which limits the transmission of copies of workers genes and increases potential conflicts between colony members. In this thesis, we investigated the link between social structure variations and conflicts, and explored the mechanisms involved in variation of colony queen number in ants. According to kin selection, workers should rear the brood they are most related to. In social Hymenoptera, males are haploid whereas females (workers and queens) are diploid. As a result, workers can be up to three times more related to females than males in some colonies, where they should consequently favour the production of females. In contrast, queens are equally related to daughters and sons in all types of colonies and therefore should favour a balanced sex ratio. In a meta-analysis across all studies of social Hymenoptera, we showed that colony sex ratio is generally largely influenced by workers. Hence, the evolution of social structures where queens and workers are equally related to males and females may contribute to decrease the conflict between the two castes over colony sex ratio. Another conflict between queens and workers can occur over male production. Many species contain workers that still have the ability to lay haploid eggs. In some social structures, workers are on average more related to sons of queens than to sons of other workers. As a result, workers should eliminate worker-laid eggs to favour queen-laid eggs. We showed that in the ant Formica selysi, workers eliminate more worker-laid than queen-laid eggs, independently of colony social structure. These results therefore suggest that worker policing can evolve independently from relatedness, potentially because of costs of worker reproduction at the colony-level. Colony queen number is a key parameter that influences relatedness between group members. Queen body size is generally linked to the success of independent colony foundation by single queens and may influence the number of queens in the new colony. In the ant F. selysi, single-queen colonies produce larger queens than multiple-queen colonies. We showed that this association results from genes or maternal effects transmitted to the eggs. However, we also found that queens produced in colonies of the two social forms did not differ in their general ability to found new colonies independently. Queen body size may also influence queen dispersal ability and constrain small queens to be re-adopted in their original nest after mating at proximity. We tested the acceptance of new queens in another ant species, Formica paralugubris, which has numerous queens per colony. Our results show that workers do not discriminate between nestmate and foreign queens, and more generally accept new queens at a limited rate. To conclude, this thesis shows that mechanisms influencing variation in colony queen number and the influence of these changes on conflict resolution are complex. Data gathered in this thesis therefore constitute a solid background for further research on the evolution and the maintenance of complex organisations in insect societies.
Resumo:
Introduction: Pain and beliefs have an influence on the patient's course in rehabilitation, pain causes fears and fears influence pain perception. The aim of this study is to understand pain and beliefs evolutions during rehabilitation taking into account of bio-psycho-social complexity.Patients and methods: 631 consecutive patients admitted in rehabilitation after a musculoskeletal traumatism were included and assessed at admission and at discharge. Pain was measured by VAS (Visual Analogical Scale), bio-psycho-social complexity by Intermed scale, and beliefs by judgement on Lickert scales. Four kinds of beliefs were evaluated: fear of a severe origin of pain, fear of movement, fear of pain and feeling of distress (loss of control). The association between the changes in pain and beliefs during the hospitalization was assessed by linear regressions.Results: After adjustment for gender, age, education and native language, patients with a decrease in pain during rehabilitation have higher probability of decreasing their fears. For the distress feeling, this relationship is weaker among bio-psycho-socially complex patients (odds-ratio 1.22 for each decreasing of 10mm/100 VAS) than among non-complex patients (OR 1.47). Patients with a pain decrease of 30% or more during hospitalization have higher probability of seeing their fears decrease, this relationship being stronger in complex patient for fear of a severe origin of pain.Discussion: The relationships between evolution of pain and beliefs move in the same direction. The higher a patient feels pain, the less they could be able to modify their dysfunctional beliefs. When the pain diminishes of 30% or more, the probability to challenge the beliefs is increased. The prognostic with regard to feeling of distress and fear of a severe origin of pain, is worse among bio-psycho-socially complex patients.
Resumo:
Introduction. This paper studies the situation of research on Catalan literature between 1976 and 2003 by carrying out a bibliometric and social network analysis of PhD theses defended in Spain. It has a dual aim: to present interesting results for the discipline and to demonstrate the methodological efficacy of scientometric tools in the humanities, a field in which they are often neglected due to the difficulty of gathering data. Method. The analysis was performed on 151 records obtained from the TESEO database of PhD theses. The quantitative estimates include the use of the UCINET and Pajek software packages. Authority control was performed on the records. Analysis. Descriptive statistics were used to describe the sample and the distribution of responses to each question. Sex differences on key questions were analysed using the Chi-squared test. Results. The value of the figures obtained is demonstrated. The information obtained on the topic and the periods studied in the theses, and on the actors involved (doctoral students, thesis supervisors and members of defence committees), provide important insights into the mechanisms of humanities disciplines. The main research tendencies of Catalan literature are identified. It is observed that the composition of members of the thesis defence committees follows Lotka's Law. Conclusions. Bibliometric analysis and social network analysis may be especially useful in the humanities and in other fields which are lacking in scientometric data in comparison with the experimental sciences.
Resumo:
Cooperation in joint enterprises can easily break down when self-interests are in conflict with collective benefits, causing a tragedy of the commons. In such social dilemmas, the possibility for contributors to invest in a common pool-rewards fund, which will be shared exclusively among contributors, can be powerful for averting the tragedy, as long as the second-order dilemma (i.e. withdrawing contribution to reward funds) can be overcome (e.g. with second-order sanctions). However, the present paper reveals the vulnerability of such pool-rewarding mechanisms to the presence of reward funds raised by defectors and shared among them (i.e. anti-social rewarding), as it causes a cooperation breakdown, even when second-order sanctions are possible. I demonstrate that escaping this social trap requires the additional condition that coalitions of defectors fare poorly compared with pro-socials, with either (i) better rewarding abilities for the latter or (ii) reward funds that are contingent upon the public good produced beforehand, allowing groups of contributors to invest more in reward funds than groups of defectors. These results suggest that the establishment of cooperation through a collective positive incentive mechanism is highly vulnerable to anti-social rewarding and requires additional countermeasures to act in combination with second-order sanctions.
Resumo:
The dress code of paper wasps, like that of humans, is related to their social habits: species with a flexible nest-founding strategy have highly variable black-and-yellow markings. This color polymorphism facilitates individual recognition and might have been selected to permit complex social interactions.
Resumo:
Human cooperation is typically coordinated by institutions, which determine the outcome structure of the social interactions individuals engage in. Explaining the Neolithic transition from small- to large-scale societies involves understanding how these institutions co-evolve with demography. We study this using a demographically explicit model of institution formation in a patch-structured population. Each patch supports both social and asocial niches. Social individuals create an institution, at a cost to themselves, by negotiating how much of the costly public good provided by cooperators is invested into sanctioning defectors. The remainder of their public good is invested in technology that increases carrying capacity, such as irrigation systems. We show that social individuals can invade a population of asocials, and form institutions that support high levels of cooperation. We then demonstrate conditions where the co-evolution of cooperation, institutions, and demographic carrying capacity creates a transition from small- to large-scale social groups.
Resumo:
The expression of a social behaviour may affect the fitness of actors and recipients living in the present and in the future of the population. When there is a risk that a future reward will not be experienced in such a context, the value of that reward should be discounted; but by how much? Here, we evaluate social discount rates for delayed fitness rewards to group of recipients living at different positions in both space and time than the actor in a hierarchically clustered population. This is a population where individuals are grouped into families, families into villages, villages into clans, and so on, possibly ad infinitum. The group-wide fitness effects are assumed to either increase or decrease the fecundity or the survival of recipients and can be arbitrarily extended in space and time. We find that actions changing the survival of individuals living in the future are generally more strongly discounted than fecundity-changing actions for all future times and that the value of future rewards increases as individuals live longer. We also find that delayed fitness effects may not only be discounted by a constant factor per unit delay (exponential discounting), but that, as soon as there is localized dispersal in a population, discounting per unit delay is likely to fall rapidly for small delays and then slowly for longer delays (hyperbolic discounting). As dispersal tends to be localized in natural populations, our results suggest that evolution is likely to favour individuals that express present-biased behaviours and that may be time-inconsistent with respect to their group-wide effects.
Resumo:
Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.
Resumo:
Cooperation is ubiquitous in nature: genes cooperate in genomes, cells in muti- cellular organims, and individuals in societies. In humans, division of labor and trade are key elements of most known societies, where social life is regulated by- moral systems specifying rights and duties often enforced by third party punish¬ment. Over the last decades, several primary mechanisms, such as kin selection, direct and indirect reciprocity, have been advanced to explain the evolution of cooperation from a naturalistic approach. In this thesis, I focus on the study of three secondary mechanisms which, although insufficient to allow for the evo¬lution of cooperation, have been hypothesized to further promote it when they are linked to proper primary mechanisms: conformity (the tendency to imitate common behaviors), upstream reciprocity (the tendency to help somebody once help has been received from somebody else) and social diversity (heterogeneous social contexts). I make use of mathematical and computational models in the formal framework of evolutionary game theory in order to investigate the theoret¬ical conditions under which conformity, upstream reciprocity and social diversity are able to raise the levels of cooperation attained in evolving populations. - La coopération est ubiquitaire dans la nature: les gènes coopèrent dans les génomes, les cellules dans les organismes muticellulaires, et les organismes dans les sociétés. Chez les humains, la division du travail et le commerce sont des éléments centraux de la plupart des sociétés connues, où la vie sociale est régie par des systèmes moraux établissant des droits et des devoirs, souvent renforcés par la punition. Au cours des dernières décennies, plusieurs mécanismes pri¬maires, tels que la sélection de parentèle et les réciprocités directe et indirecte, ont été avancés pour expliquer l'évolution de la coopération d'un point de vue nat¬uraliste. Dans cette thèse, nous nous concentrons sur l'étude de trois mécanismes secondaires qui, bien qu'insuffisants pour permettre l'évolution de la coopération, sont capables de la promouvoir davantage s'ils sont liés aux mécanismes primaires appropriés: la conformité (tendance à imiter des comportements en commun), la 'réciprocité en amont' (tendance à aider quelqu'un après avoir reçu l'aide de quelqu'un d'autre) et la diversité sociale (contextes sociaux hétérogènes). Nous faisons usage de modèles mathématiques et informatiques dans le cadre formel de la théorie des jeux évolutionnaires afin d'examiner les conditions théoriques dans lesquelles la conformité, la 'réciprocité en amont' et la diversité sociale sont capables d'élever le niveau de coopération des populations en évolution.
Resumo:
UANL
Resumo:
Speaker(s): Prof. Steffen Staab Organiser: Dr Tim Chown Time: 23/05/2014 10:30-11:30 Location: B53/4025 Abstract The Web is constructed based on our experiences in a multitude of modalities: text, networks, images, physical locations are some examples. Understanding the Web requires from us that we can model these modalities as they appear on the Web. In this talk I will show some examples of how we model text, hyperlink networks and physical-social systems in order to improve our understanding and our use of the Web.