807 resultados para smart power grid
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Resumo:
O objetivo deste trabalho é conhecer e compreender melhor os imprevistos no fornecimento de energia elétrica, quando ocorrem as variações de tensão de curta duração (VTCD). O banco de dados necessário para os diagnósticos das faltas foi obtido através de simulações de um modelo de alimentador radial através do software PSCAD/EMTDC. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar VTCDs e realizar a estimativa automática da frequência, do ângulo de fase e da amplitude das tensões e correntes da rede elétrica. Nesta pesquisa, desenvolveram-se duas redes neurais artificiais: uma para identificar e outra para localizar as VTCDs ocorridas no sistema de distribuição de energia elétrica. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas desequilibradas, que podem possuir ramais laterais trifásicos, bifásicos e monofásicos. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões e correntes no nó inicial do alimentador e também em alguns pontos esparsos ao longo do alimentador de distribuição. Os desempenhos das arquiteturas das redes neurais foram satisfatórios e demonstram a viabilidade das RNAs na obtenção das generalizações que habilitam o sistema para realizar a classificação de curtos-circuitos.
Resumo:
O objetivo deste trabalho é contribuir com o desenvolvimento de uma técnica baseada em sistemas inteligentes que possibilite a localização exata ou aproximada do ponto de origem de uma Variação de Tensão de Curta Duração (VTCD) (gerada por uma falta) em um sistema de distribuição de energia elétrica. Este trabalho utiliza um Phase-Locked Loop (PLL) com o intuito de detectar as faltas. Uma vez que a falta é detectada, os sinais de tensão obtidos durante a falta são decompostos em componentes simétricas instantâneas por meio do método proposto. Em seguida, as energias das componentes simétricas são calculadas e utilizadas para estimar a localização da falta. Nesta pesquisa, são avaliadas duas estruturas baseadas em Redes Neurais Artificiais (RNAs). A primeira é projetada para classificar a localização da falta em um dos pontos possíveis e a segunda é projetada para estimar a distância da falta ao alimentador. A técnica aqui proposta aplica-se a alimentadores trifásicos com cargas equilibradas. No desenvolvimento da mesma, considera-se que há disponibilidade de medições de tensões no nó inicial do alimentador e também em pontos esparsos ao longo da rede de distribuição. O banco de dados empregado foi obtido através de simulações de um modelo de alimentador radial usando o programa PSCAD/EMTDC. Testes de sensibilidade empregando validação-cruzada são realizados em ambas as arquiteturas de redes neurais com o intuito de verificar a confiabilidade dos resultados obtidos. Adicionalmente foram realizados testes com faltas não inicialmente contidas no banco de dados a fim de se verificar a capacidade de generalização das redes. Os desempenhos de ambas as arquiteturas de redes neurais foram satisfatórios e demonstram a viabilidade das técnicas propostas para realizar a localização de faltas em redes de distribuição.
Resumo:
This paper discusses the inverter ratings of Brushless Doubly-Fed Machine (BDFM) adjustable speed drive (ASD) or generator (ASG) systems. Based on the per phase equivalent circuit model, the ratings of the two inverters in a bidirectional converter are evaluated individually. An approach to minimise the total inverter rating is presented, taking into account power factor constraints of the power grid. The effects of speed deviation and control winding excitation on the inverter ratings are discussed. Predictions of inverter ratings are presented with experimental verification. A design example is also provided in which the total inverter rating is minimised for a practical BDFM based ASG system. © 2005 IEEE.
Resumo:
Autor książki: Wielka szachownica. Cele polityki amerykańskiej (Warszawa 1998) postrzega stosunki wzajemne pośród uczestników areny międzynarodowej jako wielką szachownicę, na której toczy się pomiędzy nimi „Wielka Polityka” (gra). Sytuacja światowa rozgrywa się, według niego, na jednej szachownicy (arenie międzynarodowej), a uczestnicy „gry” zajmują pozycje pionków. Jest to, więc swoista partia szachów, gdzie silniejszy zdobywa prestiż, pieniądze i władzę, natomiast słabszy przegrywa wszystko, osiągając marginalne znaczenie na globalnej szachownicy. Z kolei J. Nye eksponuje trzy płaszczyzny tej samej szachownicy, a mianowicie: potęgę militarną, gospodarczą oraz „miękkie środki oddziaływania politycznego”, wokół których toczy się polityka międzynarodowa. Jego trylogia poświęcona postrzeganiu potęgi państw powinna być lekturą obowiązkową, skierowaną przede wszystkim do polityków i mężów stanu, z przesłaniem, aby wskazane przez autora czynniki siły stosowali w praktyce, co pomoże im lepiej władać państwem. Jest to także książka przeznaczona dla wszystkich zainteresowanych polityką i jej zagadnieniami związanymi z percepcją potęgi. W niniejszej rozprawie naukowej skoncentrowałam się na trzech najważniejszych książkach J. Nye’a, stanowiących analizę atrybutów potęgi i wyjaśniających jej znaczenie. Są to: Bound to Lead. The Changing Nature of American Power (New York 1991), The Paradox of American Power. Why the World’s Only Superpower Can’t Go It Alone (Oxford 2002) oraz Soft Power. The Means to Success in World Politics (New York 2004; wyd. polskie: Soft Power. Jak osiągnąć sukces w polityce światowej, Warszawa 2007). Stanowią one podstawę do zrozumienia percepcji pojęcia potęgi Stanów Zjednoczonych. Choć autora zajmują także kwestie innych państw, to jednak właśnie mocarstwowość USA jako najpotężniejszego kraju na świecie, posiadającego wszelkie czynniki wzmacniające jego potęgę (władzę), stanowi podstawę rozważań J. Nye’a.
Resumo:
W artykule autor analizuje percepcję potęgi amerykańskiej. Nie zgadza się z założeniem innych badaczy, iż nastąpi upadek siły Stanów Zjednoczonych. Nawet gdyby do tego doszło, USA nadal będą „Primus Inter Pares” wśród innych członków Wielkiej Szachownicy. Przygląda się On uważnie wadom i zaletom polityki tego mocarstwa. Dzieli potęgę imperium na trzy płaszczyzny: segment siły militarnej, potencjał ekonomiczny oraz soft power. Jego zdaniem tylko rozsądne użycie odpowiedniego zasobu siły „miękkiej” lub „twardej” prowadzi do smart power, czyli rozważnej polityki. Na tym właśnie powinno się opierać amerykańskie mocarstwo, a nie na nadużywaniu siły. USA powinny określić swoją rolę na arenie międzynarodowej, nie bać się „nadwyrężenia imperialnego” oraz stać się prawdziwym przywódcą a nie tylko hegemonem. Takie właśnie postępowanie, polegające na właściwym użyciu swojej potęgi doprowadzi do wzajemnej kooperacji, jak również wzrostu bezpieczeństwa międzynarodowego.
Resumo:
W artykule dokonana została analiza percepcji potęgi amerykańskiej wg Josepha Nye’a. Przyrównuje on glob ziemski do Globalnej Szachownicy, na której ma miejsce Wielka Gra, pomiędzy jej uczestnikami. Owa gra toczy się na trzech równoległych płaszczyznach: sektorze siły militarnej, potencjale ekonomicznym oraz „miękkiej sile”. Te trzy sektory tworzą smart power, czyli rozważną potęgę. Zatem każde państwo, jak również pozapaństwowi uczestnicy stosunków międzynarodowych, posiada te trzy zasoby. Jednakże, można ich używać w przeróżny sposób, często nadużywając siły militarnej, kosztem „miękkiego oddziaływania politycznego”. Nie prowadzi to do rozważnej siły, a więc również nie zwiększa bezpieczeństwa na arenie międzynarodowej.
Resumo:
This paper documents the design, implementation and characterisation of a wireless sensor node (GENESI Node v1.0), applicable to long-term structural health monitoring. Presented is a three layer abstraction of the hardware platform; consisting of a Sensor Layer, a Main Layer and a Power Layer. Extended operational lifetime is one of the primary design goals, necessitating the inclusion of supplemental energy sources, energy awareness, and the implementation of optimal components (microcontroller(s), RF transceiver, etc.) to achieve lowest-possible power consumption, whilst ensuring that the functional requirements of the intended application area are satisfied. A novel Smart Power Unit has been developed; including intelligence, ambient available energy harvesting (EH), storage, electrochemical fuel cell integration, and recharging capability, which acts as the Power Layer for the node. The functional node has been prototyped, demonstrated and characterised in a variety of operational modes. It is demonstrable via simulation that, under normal operating conditions within a structural health monitoring application, the node may operate perpetually.
Resumo:
Electric vehicles (EVs) and hybrid EVs are the way forward for green transportation and for establishing low-carbon economy. This paper presents a split converter-fed four-phase switched reluctance motor (SRM) drive to realize flexible integrated charging functions (dc and ac sources). The machine is featured with a central-tapped winding node, eight stator slots, and six rotor poles (8/6). In the driving mode, the developed topology has the same characteristics as the traditional asymmetric bridge topology but better fault tolerance. The proposed system supports battery energy balance and on-board dc and ac charging. When connecting with an ac power grid, the proposed topology has a merit of the multilevel converter; the charging current control can be achieved by the improved hysteresis control. The energy flow between the two batteries is balanced by the hysteresis control based on their state-of-charge conditions. Simulation results in MATLAB/Simulink and experiments on a 150-W prototype SRM validate the effectiveness of the proposed technologies, which may provide a solution to EV charging issues associated with significant infrastructure requirements.
Resumo:
The integration of an ever growing proportion of large scale distributed renewable generation has increased the probability of maloperation of the traditional RoCoF and vector shift relays. With reduced inertia due to non-synchronous penetration in a power grid, system wide disturbances have forced the utility industry to design advanced protection schemes to prevent system degradation and avoid cascading outages leading to widespread blackouts. This paper explores a novel adaptive nonlinear approach applied to islanding detection, based on wide area phase angle measurements. This is challenging, since the voltage phase angles from different locations exhibit not only strong nonlinear but also time-varying characteristics. The adaptive nonlinear technique, called moving window kernel principal component analysis is proposed to model the time-varying and nonlinear trends in the voltage phase angle data. The effectiveness of the technique is exemplified using both DigSilent simulated cases and real test cases recorded from the Great Britain and Ireland power systems by the OpenPMU project.
Resumo:
There has been much interest in the belief–desire–intention (BDI) agent-based model for developing scalable intelligent systems, e.g. using the AgentSpeak framework. However, reasoning from sensor information in these large-scale systems remains a significant challenge. For example, agents may be faced with information from heterogeneous sources which is uncertain and incomplete, while the sources themselves may be unreliable or conflicting. In order to derive meaningful conclusions, it is important that such information be correctly modelled and combined. In this paper, we choose to model uncertain sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty theories, simple combination strategies in DS theory are often too restrictive (losing valuable information) or too permissive (resulting in ignorance). For this reason, we investigate how a context-dependent strategy originally defined for possibility theory can be adapted to DS theory. In particular, we use the notion of largely partially maximal consistent subsets (LPMCSes) to characterise the context for when to use Dempster’s original rule of combination and for when to resort to an alternative. To guide this process, we identify existing measures of similarity and conflict for finding LPMCSes along with quality of information heuristics to ensure that LPMCSes are formed around high-quality information. We then propose an intelligent sensor model for integrating this information into the AgentSpeak framework which is responsible for applying evidence propagation to construct compatible information, for performing context-dependent combination and for deriving beliefs for revising an agent’s belief base. Finally, we present a power grid scenario inspired by a real-world case study to demonstrate our work.
Resumo:
In recent decades, all over the world, competition in the electric power sector has deeply changed the way this sector’s agents play their roles. In most countries, electric process deregulation was conducted in stages, beginning with the clients of higher voltage levels and with larger electricity consumption, and later extended to all electrical consumers. The sector liberalization and the operation of competitive electricity markets were expected to lower prices and improve quality of service, leading to greater consumer satisfaction. Transmission and distribution remain noncompetitive business areas, due to the large infrastructure investments required. However, the industry has yet to clearly establish the best business model for transmission in a competitive environment. After generation, the electricity needs to be delivered to the electrical system nodes where demand requires it, taking into consideration transmission constraints and electrical losses. If the amount of power flowing through a certain line is close to or surpasses the safety limits, then cheap but distant generation might have to be replaced by more expensive closer generation to reduce the exceeded power flows. In a congested area, the optimal price of electricity rises to the marginal cost of the local generation or to the level needed to ration demand to the amount of available electricity. Even without congestion, some power will be lost in the transmission system through heat dissipation, so prices reflect that it is more expensive to supply electricity at the far end of a heavily loaded line than close to an electric power generation. Locational marginal pricing (LMP), resulting from bidding competition, represents electrical and economical values at nodes or in areas that may provide economical indicator signals to the market agents. This article proposes a data-mining-based methodology that helps characterize zonal prices in real power transmission networks. To test our methodology, we used an LMP database from the California Independent System Operator for 2009 to identify economical zones. (CAISO is a nonprofit public benefit corporation charged with operating the majority of California’s high-voltage wholesale power grid.) To group the buses into typical classes that represent a set of buses with the approximate LMP value, we used two-step and k-means clustering algorithms. By analyzing the various LMP components, our goal was to extract knowledge to support the ISO in investment and network-expansion planning.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica - Ramo de Energia
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica no Ramo de Automação e Electrónica Industrial