977 resultados para smart MRI contrast agent
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
Shell-crosslinked knedel-like nanoparticles (SCKs; knedel is a Polish term for dumplings) were derivatized with gadolinium Shell chelates and studied as robust magnetic-resonance-imaging-active structures with hydrodynamic diameters of 40 +/- 3 nm. SCKs possessing an amphiphilic core-shell morphology were produced from the aqueous assembly of diblock copolymers of poly(acrylic acid) (PAA) and poly(methyl acrylate) (PMA), PAA(52)-b-PMA(128), and subsequent covalent crosslinking by amidation upon reaction with 2,2'-(ethylenedioxy)bis(ethylamine) throughout the shell layer. The properties of these materials, including non-toxicity towards mammalian cells, non-immunogenicity within mice, and capability for polyvalent targeting, make them ideal candidates for utilization within biological systems. The synthesis of SCKs derivatized with Gd-III and designed for potential use as a unique nanometer-scale contrast agent for MRI applications is described herein. Utilization of an amino-functionalized diethylenetriaminepentaacetic acid-Gd analogue allowed for direct covalent conjugation throughout the hydrophilic shell layer of the SCKs and served to increase the rotational correlation lifetime of the Gd. In addition, the highly hydrated nature of the shell layer in which the Gd was located allowed for rapid water exchange; thus, the resulting material demonstrated large ionic relaxivities (39 s(-1) mM(-1)) in an applied magnetic field of 0.47 T at 40 degrees C and, as a result of the large loading capacity of the material, also demonstrated high molecular relaxivities (20 000 s(-1) mM(-1)).
Resumo:
Chronic kidney disease (CKD) is associated with increased cardiovascular risk in comparison with the general population. This can be observed even in the early stages of CKD, and rises in proportion to the degree of renal impairment. Not only is cardiovascular disease (CVD) more prevalent in CKD, but its nature differs too, with an excess of morbidity and mortality associated with congestive cardiac failure, arrhythmia and sudden death, as well as the accelerated atherosclerosis which is also observed. Conventional cardiovascular risk factors such as hypertension, dyslipidaemia, obesity, glycaemia and smoking, are highly prevalent amongst patients with CKD, although in many of these examples the interaction between risk factor and disease differs from that which exists in normal renal function. Nevertheless, the extent of CVD cannot be fully explained by these conventional risk factors, and non-conventional factors specific to CKD are now recognised to contribute to the burden of CVD. Oxidative stress is a state characterised by excessive production of reactive oxygen species (ROS) and other radical species, a reduction in the capacity of antioxidant systems, and disturbance in normal redox homeostasis with depletion of protective vascular signalling molecules such as nitric oxide (NO). This results in oxidative damage to macromolecules such as lipids, proteins and DNA which can alter their functionality. Moreover, many enzymes are sensitive to redox regulation such that oxidative modification to cysteine thiol groups results in activation of signalling cascades which result in adverse cardiovascular effects such as vascular and endothelial dysfunction. Endothelial dysfunction and oxidative stress are present in association with many conventional cardiovascular risk factors, and can be observed even prior to the development of overt, clinical, vascular pathology, suggesting that these phenomena represent the earliest stages of CVD. In the presence of CKD, there is increased ROS production due to upregulated NADPH oxidase (NOX), increase in a circulating asymmetric dimethylarginine (ADMA), uncoupling of endothelial nitric oxide synthase (eNOS) as well as other mechanisms. There is also depletion in exogenous antioxidants such as ascorbic acid and tocopherol, and a reduction in activity of endogenous antioxidant systems regulated by the master gene regulator Nrf-2. In previous studies, circulating markers of oxidative stress have been shown to be increased in CKD, together with a reduction in endothelial function in a stepwise fashion relating to the severity of renal impairment. Not only is CVD linked to oxidative stress, but the progression of CKD itself is also in part dependent on redox sensitive mechanisms. For example, administration of the ROS scavenger tempol attenuates renal injury and reduces renal fibrosis seen on biopsy in a mouse model of CKD, whilst conversely, supplementation with the NOS inhibitor L-NAME causes proteinuria and renal impairment. Previous human studies examining the effect of antioxidant administration on vascular and renal function have been conflicting however. The work contained in this thesis therefore examines the effect of antioxidant administration on vascular and endothelial function in CKD. Firstly, 30 patients with CKD stages 3 – 5, and 20 matched hypertensive controls were recruited. Participants with CKD had lower ascorbic acid, higher TAP and ADMA, together with higher augmentation index and pulse wave velocity. There was no difference in baseline flow mediated dilatation (FMD) between groups. Intravenous ascorbic acid increased TAP and O2-, and reduced central BP and augmentation index in both groups, and lowered ADMA in the CKD group only. No effect on FMD was observed. The effects of ascorbic acid on kidney function was then investigated, however this was hindered by the inherent drawbacks of existing methods of non-invasively measuring kidney function. Arterial spin labelling MRI is an emerging imaging technique which allows measurement of renal perfusion without administration of an exogenous contrast agent. The technique relies upon application of an inversion pulse to blood within the vasculature proximal to the kidneys, which magnetically labels protons allowing measurement upon transit to the kidney. At the outset of this project local experience using ASL MRI was limited and there ensued a prolonged pre-clinical phase of testing with the aim of optimising imaging strategy. A study was then designed to investigate the repeatability of ASL MRI in a group of 12 healthy volunteers with normal renal function. The measured T1 longitudinal relaxation times and ASL MRI perfusion values were in keeping with those found in the literature; T1 time was 1376 ms in the cortex and 1491 ms in the whole kidney ROI, whilst perfusion was 321 mL/min/100g in the cortex, and 228 mL/min/100g in the whole kidney ROI. There was good reproducibility demonstrated on Bland Altman analysis, with a CVws was 9.2% for cortical perfusion and 7.1% for whole kidney perfusion. Subsequently, in a study of 17 patients with CKD and 24 healthy volunteers, the effects of ascorbic acid on renal perfusion was investigated. Although no change in renal perfusion was found following ascorbic acid, it was found that ASL MRI demonstrated significant differences between those with normal renal function and participants with CKD stages 3 – 5, with increased cortical and whole kidney T1, and reduced cortical and whole kidney perfusion. Interestingly, absolute perfusion showed a weak but significant correlation with progression of kidney disease over the preceding year. Ascorbic acid was therefore shown to have a significant effect on vascular biology both in CKD and in those with normal renal function, and to reduce ADMA only in patients with CKD. ASL MRI has shown promise as a non-invasive investigation of renal function and as a biomarker to identify individuals at high risk of progressive renal impairment.
Resumo:
Purpose: To evaluate the reliability of analysis of only 0-1min clips and 1-4min clips versus the entire clips in performing contrast-enhanced ultrasonography (CEUS) of focal liver lesions (FLLs). Methods: Contrast-enhanced ultrasonography (CEUS) examinations of 43 single FLLs were performed. All clips were analyzed in three ways, the entire clips, 0-1 min clips and 1-4 min clips, benign or malignant diagnosis and pathological diagnosis of each FLL were concluded by the three ways subsequently. Results: The results of correct diagnosis were assessed using Chi-square test. There was no difference with regard to benign or malignant diagnosis, between 0-1min clips and the entire clips, or between 1-4 min clips and the entire clips (p = 0.243 and p = 0.747, respectively). Moreover, no significant differences in pathological diagnosis existed between 0-1min clips and the entire clips, and 1- 4min clips versus entire clips (p=0.808 and p = 0.808, respectively). No significant differences existed among CEUS entire clip, 0-1min clip and 1-4min clip in identifying FLLs, and based on which the diagnosis of two different FLLs during CEUS with only one injection of contrast agent can be available. Conclusion: Only 0-1min clips or 1-4 min clips can be used to instead of the entre clip in performing CEUS of FLLs.
Resumo:
In the central nervous system, iron in several proteins is involved in many important processes: oxygen transportation, oxidative phosphorylation, mitochondrial respiration, myelin production, the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation, modification of lipids, proteins, carbohydrates, and DNA, lead to neurotoxicity. Moreover increased levels of iron are harmful and iron accumulations are typical hallmarks of brain ageing and several neurodegenerative disorders particularly PD. Numerous studies on post mortem tissue report on an increased amount of total iron in the substantia nigra in patients with PD also supported by large body of in vivo findings from Magnetic Resonance Imaging (MRI) studies. The importance and approaches for in vivo brain iron assessment using multiparametric MRI is increased over last years. Quantitative MRI may provide useful biomarkers for brain integrity assessment in iron-related neurodegeneration. Particularly, a prominent change in iron- sensitive T2* MRI contrast within the sub areas of the SN overlapping with nigrosome 1 were shown to be a hallmark of Parkinson's Disease with high diagnostic accuracy. Moreover, differential diagnosis between Parkinson's Disease (PD) and atypical parkinsonian syndromes (APS) remains challenging, mainly in the early phases of the disease. Advanced brain MR imaging enables to detect the pathological changes of nigral and extranigral structures at the onset of clinical manifestations and during the course of the disease. The Nigrosome-1 (N1) is a substructure of the healthy Substantia Nigra pars compacta enriched by dopaminergic neurons; their loss in Parkinson’s disease and atypical parkinsonian syndromes is related to the iron accumulation. N1 changes are supportive MR biomarkers for diagnosis of these neurodegenerative disorders, but its detection is hard with conventional sequences, also using high field (3T) scanner. Quantitative susceptibility mapping (QSM), an iron-sensitive technique, enables the direct detection of Neurodegeneration
Resumo:
O trabalho descrito no presente documento reporta a preparação de derivados tetrapirrólicos iodados de tipo porfirina tornando-os potenciais veículos a meio de contraste iodado, usado em radiodiagnóstico. Com os resultados deste trabalho irá ser realizado um pedido de patente das moléculas e portanto, o acesso a este trabalho será restrito nos termos do Código da Propriedade Industrial, aprovado pelo Decreto de Lei nº 36/2003 de 5 de Março. Na primeira fase do trabalho, foi sintetizado o derivado porfirínico simétrico, meso-substituído, contendo um total de 8 iodos. Este foi preparado por condensação do pirrol e do aldeído iodado em meio ácido e na presença de nitrobenzeno. Foram ainda preparados as respetivas metaloporfirinas contendo os iões metálicos de manganês e gadolínio. Posteriormente foi avaliada a capacidade destes derivados atenuarem o feixe de raio-X, através da mediação das Unidades de Hounsfield, após serem adquiridas imagens por Tomografia Computorizada. Na segunda fase do trabalho procedeu-se ao estudo da influência destes compostos na diferenciação celular, usando como modelo as células de pré-adipócitos 3T3-L1. Foi avaliada a diferenciação celular, através da quantificação de lípidos das células maduras, marcados com Red Oil O, por espectrofotometria de Visível 3 e 10 dias após a administração dos derivados em estudo.
Resumo:
Introdução – O presente estudo avaliou o efeito da cafeína no valor da razão contraste ruído (CNR) em imagens SWI. Objetivos – Avaliar o efeito da cafeína qualitativamente e quantificado pelo cálculo do valor CNR em imagens de magnitude e MIP para as estruturas: veia cerebral interna, seio sagital superior, tórcula e artéria cerebral média. Metodologia – A população do estudo incluiu 24 voluntários saudáveis que estiveram pelo menos 24h privados da ingestão de cafeína. Adquiriram-se imagens SWI antes e após a ingestão de 100ml de café. Os voluntários foram subdivididos em quatro grupos de seis indivíduos/grupo e avaliados separadamente após decorrido um intervalo de tempo diferente para cada grupo (15, 25, 30 ou 45min pós-cafeína). Utilizou-se um scanner Siemens Avanto 1,5 T com bobine standard de crânio e os parâmetros: T2* GRE 3D de alta resolução no plano axial, TR=49; TE=40; FA=15; FOV=187x230; matriz=221x320. O processamento de imagem foi efetuado no software OsiriX® e a análise estatística no GraphPadPrism®. Resultados e Discussão – As alterações de sinal e diferenças de contraste predominaram nas estruturas venosas e não foram significantes na substância branca, LCR e artéria cerebral média. Os valores CNR pré-cafeína diferiram significativamente do pós-cafeína nas imagens de magnitude e MIP na veia cerebral interna e nas imagens de magnitude do seio sagital superior e da tórcula (p<0,0001). Não se verificaram diferenças significativas entre os grupos avaliados nos diferentes tempos pós-cafeína. Conclusões – Especulamos que a cafeína possa vir a ser usada como agente de contraste nas imagens SWI barato, eficaz e de fácil administração.
Resumo:
Three PEGylated derivatives of 1,4,7,10-tetraazacyclododecane-1-((6-amino)hexanoic)-4,7,10-triacetic acid) (DOTA-AHA) with different molecular weights were prepared and characterized. Their Gd(III) chelates were studied in aqueous solution using variable-temperature 1H nuclear magnetic relaxation dispersion (NMRD) and 17ONMR spectroscopy in view of the determination of their relaxivity and the parameters that govern it. The relaxivity varied from 5.1 to 6.5 mM-1.s-1 (37 ºC and 60 MHz) with the increasing molecular weight of the PEG chain, being slightly higher than that of the parent chelate Gd(DOTA-AHA), due to a small contribution of a slow global rotation of the complexes. A variable temperature 1H NMR study of several Ln(III) chelates of DOTA-A(PEG750)HA allowed the determination of the isomeric M/m ratio (M = square antiprismatic isomer and m = twisted square antiprismatic isomer, the latter presenting a much faster water exchange) which for the Gd(III) chelate was estimated in circa 1:0.2, very close to that of [Gd(DOTA)]-. This explains why the PEGylated Gd(III) chelate has a water rate exchange similar to that of [Gd(DOTA)]-. The predominance of the M isomer is a consequence of the bulky PEG moiety which does not favor the stabilization of the m isomer in sterically crowded systems at the substituent site, contrary to what happens with less packed asymmetrical DOTA-type chelates with substitution in one of the four acetate C(α) atoms.
Resumo:
The relaxivity displayed by Gd3+ chelates immobilized onto gold nanoparticles is the result of complex interplay between nanoparticle size, water exchange rate and chelate structure. In this work we study the effect of the length of -thioalkyl linkers, anchoring fast water exchanging Gd3+ chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd3+ chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM-1s-1 (30 MHz, 25 ºC) were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles is determined mainly by size. Small nanoparticles (HD= 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD= 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggests that functionalized gold nanoparticles hold great potential for further investigation as MRI Contrast Agents. This study contributes to understand the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd3+ complexes. It is a relevant contribution towards “design rules” for nanostructures functionalized with Gd3+ chelates as Contrast Agents for MRI and multimodal imaging.
Resumo:
The objective of this work was to develop an easily applicable technique and a standardized protocol for high-quality post-mortem angiography. This protocol should (1) increase the radiological interpretation by decreasing artifacts due to the perfusion and by reaching a complete filling of the vascular system and (2) ease and standardize the execution of the examination. To this aim, 45 human corpses were investigated by post-mortem computed tomography (CT) angiography using different perfusion protocols, a modified heart-lung machine and a new contrast agent mixture, specifically developed for post-mortem investigations. The quality of the CT angiographies was evaluated radiologically by observing the filling of the vascular system and assessing the interpretability of the resulting images and by comparing radiological diagnoses to conventional autopsy conclusions. Post-mortem angiography yielded satisfactory results provided that the volumes of the injected contrast agent mixture were high enough to completely fill the vascular system. In order to avoid artifacts due to the post-mortem perfusion, a minimum of three angiographic phases and one native scan had to be performed. These findings were taken into account to develop a protocol for quality post-mortem CT angiography that minimizes the risk of radiological misinterpretation. The proposed protocol is easy applicable in a standardized way and yields high-quality radiologically interpretable visualization of the vascular system in post-mortem investigations.
Resumo:
Puropse/Aim: To learn about the developement of post mortem CT angiography, its indications, benefits, pitfalls and practical application. Content Organization: A. Developement of post mortem CT angiography B. Technical prerequisites C. Practical application of post mortem CT angiography (preparation of the body, injection of contrast agent, examination protocol) D. Indications and benefits (including a comparison with conventional autopsy) E. Interpretation of imaging data (with case demonstrations) F. Artifacts, pitfalls and limitations G. Current and potential future use. Summary: This exhibit demonstrates the developement, application and interpretation of post mortem CT angiography. Teaching points: 1. post mortem CT angiography is feasible and useful for identification of the cause of death 2. depending on the indication it can be superior to autopsy 3. limitations and artifacts need to be known for interpreta
Resumo:
PURPOSE: Postmortem computed tomography angiography (PMCTA) was introduced into forensic investigations a few years ago. It provides reliable images that can be consulted at any time. Conventional autopsy remains the reference standard for defining the cause of death, but provides only limited possibility of a second examination. This study compares these two procedures and discusses findings that can be detected exclusively using each method. MATERIALS AND METHODS: This retrospective study compared radiological reports from PMCTA to reports from conventional autopsy for 50 forensic autopsy cases. Reported findings from autopsy and PMCTA were extracted and compared to each other. PMCTA was performed using a modified heart-lung machine and the oily contrast agent Angiofil® (Fumedica AG, Muri, Switzerland). RESULTS: PMCTA and conventional autopsy would have drawn similar conclusions regarding causes of death. Nearly 60 % of all findings were visualized with both techniques. PMCTA demonstrates a higher sensitivity for identifying skeletal and vascular lesions. However, vascular occlusions due to postmortem blood clots could be falsely assumed to be vascular lesions. In contrast, conventional autopsy does not detect all bone fractures or the exact source of bleeding. Conventional autopsy provides important information about organ morphology and remains the only way to diagnose a vital vascular occlusion with certitude. CONCLUSION: Overall, PMCTA and conventional autopsy provide comparable findings. However, each technique presents advantages and disadvantages for detecting specific findings. To correctly interpret findings and clearly define the indications for PMCTA, these differences must be understood.
Resumo:
Digital holographic microscopy (DHM) is a technique that allows obtaining, from a single recorded hologram, quantitative phase image of living cell with interferometric accuracy. Specifically the optical phase shift induced by the specimen on the transmitted wave front can be regarded as a powerful endogenous contrast agent, depending on both the thickness and the refractive index of the sample. Thanks to a decoupling procedure cell thickness and intracellular refractive index can be measured separately. Consequently, Mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), two highly relevant clinical parameters, have been measured non-invasively at a single cell level. The DHM nanometric axial and microsecond temporal sensitivities have permitted to measure the red blood cell membrane fluctuations (CMF) on the whole cell surface. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering.
Resumo:
The primary goal of this study was to design a fluorescent E-selectin-targeted iodine-containing liposome for specific E-selectin imaging with the use of micro-CT. The secondary goal was to correlate the results of micro-CT imaging with other imaging techniques with cellular resolution, i.e., confocal and intravital microscopy. E-selectin-targeted liposomes were tested on endothelial cells in culture and in vivo in HT-29 tumor-bearing mice (n = 12). The liposomes contained iodine (as micro-CT contrast medium) and fluorophore (as optical contrast medium) for confocal and intravital microscopy. Optical imaging methods were used to confirm at the cellular level, the observations made with micro-CT. An ischemia-reperfusion model was used to trigger neovessel formation for intravital imaging. The E-selectin-targeted liposomes were avidly taken up by activated endothelial cells, whereas nontargeted liposomes were not. Direct binding of the E-selectin-targeted liposomes was proved by intravital microscopy, where bright spots clearly appeared on the activated vessels. Micro-CT imaging also demonstrated accumulation of the targeted lipsomes into subcutaneous tumor by an increase of 32 +/- 8 HU. Hence, internalization by activated endothelial cells was rapid and mediated by E-selectin. We conclude that micro-CT associated with specific molecular contrast agent is able to detect specific molecular markers on activated vessel walls in vivo.
Resumo:
Conventional coronary magnetic resonance angiography (MRA) techniques display the coronary blood-pool along with the surrounding structures, including the myocardium, the ventricular and atrial blood-pool, and the great vessels. This representation of the coronary lumen is not directly analogous to the information provided by x-ray coronary angiography, in which the coronary lumen displayed by iodinated contrast agent is seen. Analogous "luminographic" data may be obtained using MR arterial spin tagging (projection coronary MRA) techniques. Such an approach was implemented using a 2D selective "pencil" excitation for aortic spin tagging in concert with a 3D interleaved segmented spiral imaging sequence with free-breathing, and real-time navigator technology. This technique allows for selective 3D visualization of the coronary lumen blood-pool, while signal from the surrounding structures is suppressed.