825 resultados para sleep complaints


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep is governed by a homeostatic process in which the duration and quality of previous wake regulate the subsequent sleep. Active wakefulness is characterized with high frequency cortical oscillations and depends on stimulating influence of the arousal systems, such as the cholinergic basal forebrain (BF), while cessation of the activity in the arousal systems is required for slow wave sleep (SWS) to occur. The site-specific accumulation of adenosine (a by-product of ATP breakdown) in the BF during prolonged waking /sleep deprivation (SD) is known to induce sleep, thus coupling energy demand to sleep promotion. The adenosine release in the BF is accompanied with increases in extracellular lactate and nitric oxide (NO) levels. This thesis was aimed at further understanding the cellular processes by which the BF is involved in sleep-wake regulation and how these processes are affected by aging. The BF function was studied simultaneously at three levels of organization: 1) locally at a cellular level by measuring energy metabolites 2) globally at a cortical level (the out-put area of the BF) by measuring EEG oscillations and 3) at a behavioral level by studying changes in vigilance states. Study I showed that wake-promoting BF activation, particularly with glutamate receptor agonist N-methyl-D-aspatate (NMDA), increased extracellular adenosine and lactate levels and led to a homeostatic increase in the subsequent sleep. Blocking NMDA activation during SD reduced the high frequency (HF) EEG theta (7-9 Hz) power and attenuated the subsequent sleep. In aging, activation of the BF during SD or experimentally with NMDA (studies III, IV), did not induce lactate or adenosine release and the increases in the HF EEG theta power during SD and SWS during the subsequent sleep were attenuated as compared to the young. These findings implicate that increased or continuous BF activity is important for active wake maintenance during SD as well as for the generation of homeostatic sleep pressure, and that in aging these mechanisms are impaired. Study II found that induction of the inducible NO synthase (iNOS) during SD is accompanied with activation of the AMP-activated protein kinase (AMPK) in the BF. Because decreased cellular energy charge is the most common cause for AMPK activation, this finding implicates that the BF is selectively sensitive to the metabolic demands of SD as increases were not found in the cortex. In aging (study III), iNOS expression and extracellular levels of NO and adenosine were not significantly increased during SD in the BF. Furthermore, infusion of NO donor into the BF did not lead to sleep promotion as it did in the young. These findings indicated that the NO (and adenosine) mediated sleep induction is impaired in aging and that it could at least partly be due to the reduced sensitivity of the BF to sleep-inducing factors. Taken together, these findings show that reduced sleep promotion by the BF contributes to the attenuated homeostatic sleep response in aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep deprivation leads to increased subsequent sleep length and depth and to deficits in cognitive performance in humans. In animals extreme sleep deprivation is eventually fatal. The cellular and molecular mechanisms causing the symptoms of sleep deprivation are unclear. This thesis was inspired by the hypothesis that during wakefulness brain energy stores would be depleted, and they would be replenished during sleep. The aim of this thesis was to elucidate the energy metabolic processes taking place in the brain during sleep deprivation. Endogenous brain energy metabolite levels were assessed in vivo in rats and in humans in four separate studies (Studies I-IV). In the first part (Study I) the effects of local energy depletion on brain energy metabolism and sleep were studied in rats with the use of in vivo microdialysis combined with high performance liquid chromatography. Energy depletion induced by 2,4-dinitrophenol infusion into the basal forebrain was comparable to the effects of sleep deprivation: both increased extracellular concentrations of adenosine, lactate, and pyruvate, and elevated subsequent sleep. This result supports the hypothesis of a connection between brain energy metabolism and sleep. The second part involved healthy human subjects (Studies II-IV). Study II aimed to assess the feasibility of applying proton magnetic resonance spectroscopy (1H MRS) to study brain lactate levels during cognitive stimulation. Cognitive stimulation induced an increase in lactate levels in the left inferior frontal gyrus, showing that metabolic imaging of neuronal activity related to cognition is possible with 1H MRS. Study III examined the effects of sleep deprivation and aging on the brain lactate response to cognitive stimulation. No physiologic, cognitive stimulation-induced lactate response appeared in the sleep-deprived and in the aging subjects, which can be interpreted as a sign of malfunctioning of brain energy metabolism. This malfunctioning may contribute to the functional impairment of the frontal cortex both during aging and sleep deprivation. Finally (Study IV), 1H MRS major metabolite levels in the occipital cortex were assessed during sleep deprivation and during photic stimulation. N-acetyl-aspartate (NAA/H2O) decreased during sleep deprivation, supporting the hypothesis of sleep deprivation-induced disturbance in brain energy metabolism. Choline containing compounds (Cho/H2O) decreased during sleep deprivation and recovered to alert levels during photic stimulation, pointing towards changes in membrane metabolism, and giving support to earlier observations of altered brain response to stimulation during sleep deprivation. Based on these findings, it can be concluded that sleep deprivation alters brain energy metabolism. However, the effects of sleep deprivation on brain energy metabolism may vary from one brain area to another. Although an effect of sleep deprivation might not in all cases be detectable in the non-stimulated baseline state, a challenge imposed by cognitive or photic stimulation can reveal significant changes. It can be hypothesized that brain energy metabolism during sleep deprivation is more vulnerable than in the alert state. Changes in brain energy metabolism may participate in the homeostatic regulation of sleep and contribute to the deficits in cognitive performance during sleep deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several aspects of sleep behavior such as timing, duration and quality have been demonstrated to be heritable. To identify common variants that influence sleep traits in the population, we conducted a genome-wide association study of six sleep phenotypes assessed by questionnaire in a sample of 2,323 individuals from the Australian Twin Registry. Genotyping was performed on the Illumina 317, 370, and 610K arrays and the SNPs in common between platforms were used to impute non-genotyped SNPs. We tested for association with more than 2,000,000 common polymorphisms across the genome. While no SNPs reached the genome-wide significance threshold, we identified a number of associations in plausible candidate genes. Most notably, a group of SNPs in the third intron of the CACNA1C gene ranked as most significant in the analysis of sleep latency (P = 1.3 x 10(-)(6)). We attempted to replicate this association in an independent sample from the Chronogen Consortium (n = 2,034), but found no evidence of association (P = 0.73). We have identified several other suggestive associations that await replication in an independent sample. We did not replicate the results from previous genome-wide analyses of self-reported sleep phenotypes after correction for multiple testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To identify common genetic variants that predispose to caffeine-induced insomnia and to test whether genes whose expression changes in the presence of caffeine are enriched for association with caffeine-induced insomnia. DESIGN A hypothesis-free, genome-wide association study. SETTING Community-based sample of Australian twins from the Australian Twin Registry. PARTICIPANTS After removal of individuals who said that they do not drink coffee, a total of 2,402 individuals from 1,470 families in the Australian Twin Registry provided both phenotype and genotype information. MEASUREMENTS AND RESULTS A dichotomized scale based on whether participants reported ever or never experiencing caffeine-induced insomnia. A factor score based on responses to a number of questions regarding normal sleep habits was included as a covariate in the analysis. More than 2 million common single nucleotide polymorphisms (SNPs) were tested for association with caffeine-induced insomnia. No SNPs reached the genome-wide significance threshold. In the analysis that did not include the insomnia factor score as a covariate, the most significant SNP identified was an intronic SNP in the PRIMA1 gene (P = 1.4 x 10(-)(6), odds ratio = 0.68 [0.53 - 0.89]). An intergenic SNP near the GBP4 gene on chromosome 1 was the most significant upon inclusion of the insomnia factor score into the model (P = 1.9 x 10(-)(6), odds ratio = 0.70 [0.62 - 0.78]). A previously identified association with a polymorphism in the ADORA2A gene was replicated. CONCLUSIONS Several genes have been identified in the study as potentially influencing caffeine-induced insomnia. They will require replication in another sample. The results may have implications for understanding the biologic mechanisms underlying insomnia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Falls among hospitalised patients impose a considerable burden on health systems globally and prevention is a priority. Some patient-level interventions have been effective in reducing falls, but others have not. An alternative and promising approach to reducing inpatient falls is through the modification of the hospital physical environment and the night lighting of hospital wards is a leading candidate for investigation. In this pilot trial, we will determine the feasibility of conducting a main trial to evaluate the effects of modified night lighting on inpatient ward level fall rates. We will test also the feasibility of collecting novel forms of patient level data through a concurrent observational sub-study. Methods/design: A stepped wedge, cluster randomised controlled trial will be conducted in six inpatient wards over 14 months in a metropolitan teaching hospital in Brisbane (Australia). The intervention will consist of supplementary night lighting installed across all patient rooms within study wards. The planned placement of luminaires, configurations and spectral characteristics are based on prior published research and pre-trial testing and modification. We will collect data on rates of falls on study wards (falls per 1000 patient days), the proportion of patients who fall once or more, and average length of stay. We will recruit two patients per ward per month to a concurrent observational sub-study aimed at understanding potential impacts on a range of patient sleep and mobility behaviour. The effect on the environment will be monitored with sensors to detect variation in light levels and night-time room activity. We will also collect data on possible patient-level confounders including demographics, pre-admission sleep quality, reported vision, hearing impairment and functional status. Discussion: This pragmatic pilot trial will assess the feasibility of conducting a main trial to investigate the effects of modified night lighting on inpatient fall rates using several new methods previously untested in the context of environmental modifications and patient safety. Pilot data collected through both parts of the trial will be utilised to inform sample size calculations, trial design and final data collection methods for a subsequent main trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The aim was to investigate whether the sleep practices in early childhood education (ECE) settings align with current evidence on optimal practice to support sleep. Background: Internationally, scheduled sleep times are a common feature of daily schedules in ECE settings, yet little is known about the degree to which care practices in these settings align with the evidence regarding appropriate support of sleep. Methods: Observations were conducted in 130 Australian ECE rooms attended by preschool children (Mean = 4.9 years). Of these rooms, 118 had daily scheduled sleep times. Observed practices were scored against an optimality index, the Sleep Environment and Practices Optimality Score, developed with reference to current evidence regarding sleep scheduling, routines, environmental stimuli, and emotional climate. Cluster analysis was applied to identify patterns and prevalence of care practices in the sleep time. Results: Three sleep practices types were identified. Supportive rooms (36%) engaged in practices that maintained regular schedules, promoted routine, reduced environmental stimulation, and maintained positive emotional climate. The majority of ECE rooms (64%), although offering opportunity for sleep, did not engage in supportive practices: Ambivalent rooms (45%) were emotionally positive but did not support sleep; Unsupportive rooms (19%) were both emotionally negative and unsupportive in their practices. Conclusions: Although ECE rooms schedule sleep time, many do not adopt practices that are supportive of sleep. Our results underscore the need for education about sleep supporting practice and research to ascertain the impact of sleep practices in ECE settings on children’s sleep health and broader well-being.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To examine mean level differences, and longitudinal and reciprocal relations among behavioral sleep problems, emotional dysregulation, and attentional regulation across early childhood for children with and without ADHD at 8-9 years. Method This study used data from Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) – Infant Cohort (n = 4109 analyzed). Children with and without ADHD were identified at age 8-9 years via parent-report of ADHD diagnosis and the 5-item Inattention-Hyperactivity subscale from the Strengths and Difficulties Questionnaire. Maternal report of child sleep problems and self-regulation was collected at 0-1, 2-3, 4-5 and 6-7 years of age. ANOVA was used to compare mean level differences in sleep problems, emotional and attentional regulation by ADHD group. Longitudinal structural equation modeling examined the relations among sleep and self-regulation across time in children with and without ADHD. Results Children with ADHD had persistently elevated levels of sleep problems (from infancy) and emotional and attentional dysregulation compared to controls (from 2-3 years of age). Sleep problems, emotional dysregulation, and attentional regulation were stable over time for both groups. Sleep problems were associated with greater emotional dysregulation two years later from 2-3 years of age for both groups, which in turn was associated with poorer attentional regulation. There was no direct relationship between sleep problems and later attentional regulation. Conclusion Sleep problems in children with and without ADHD are associated with emotional dysregulation, which in turn contributes to poorer attentional functioning. This study highlights the importance of assessing and managing sleep problems in young children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Children’s sleep problems and self-regulation problems have been independently associated with poorer adjustment to school, but there has been limited exploration of longitudinal early childhood profiles that include both indicators. Aims This study explores the normative developmental pathway for sleep problems and self-regulation across early childhood, and investigates whether departure from the normative pathway is associated with later social-emotional adjustment to school. Sample This study involved 2880 children participating in the Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) – Infant Cohort from Wave 1 (0-1 years) to Wave 4 (6-7 years). Method Mothers reported on children’s sleep problems, emotional, and attentional self-regulation at three time points from birth to 5 years. Teachers reported on children’s social-emotional adjustment to school at 6-7 years. Latent profile analysis was used to establish person-centred longitudinal profiles. Results Three profiles were found. The normative profile (69%) had consistently average or higher emotional and attentional regulation scores and sleep problems that steadily reduced from birth to 5. The remaining 31% of children were members of two non-normative self-regulation profiles, both characterised by escalating sleep problems across early childhood and below mean self-regulation. Non-normative group membership was associated with higher teacher-reported hyperactivity and emotional problems, and poorer classroom self-regulation and prosocial skills. Conclusion Early childhood profiles of self-regulation that include sleep problems offer a way to identify children at risk of poor school adjustment. Children with escalating early childhood sleep problems should be considered an important target group for school transition interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

- Introduction Heat-based training (HT) is becoming increasingly popular as a means of inducing acclimation before athletic competition in hot conditions and/or to augment the training impulse beyond that achieved in thermo-neutral conditions. Importantly, current understanding of the effects of HT on regenerative processes such as sleep and the interactions with common recovery interventions remain unknown. This study aimed to examine sleep characteristics during five consecutive days of training in the heat with the inclusion of cold-water immersion (CWI) compared to baseline sleep patterns. - Methods Thirty recreationally-trained males completed HT in 32 ± 1 °C and 60% rh for five consecutive days. Conditions included: 1) 90 min cycling at 40 % power at VO2max (Pmax) (90CONT; n = 10); 90 min cycling at 40 % Pmax with a 20 min CWI (14 ± 1 °C; 90CWI; n = 10); and 30 min cycling alternating between 40 and 70 % Pmax every 3 min, with no recovery intervention (30HIT; n = 10). Sleep quality and quantity was assessed during HT and four nights of 'baseline' sleep (BASE). Actigraphy provided measures of time in and out of bed, sleep latency, efficiency, total time in bed and total time asleep, wake after sleep onset, number of awakenings, and wakening duration. Subjective ratings of sleep were also recorded using a 1-5 Likert scale. Repeated measures analysis of variance (ANOVA) was completed to determine effect of time and condition on sleep quality and quantity. Cohen's d effect sizes were also applied to determine magnitude and trends in the data. - Results Sleep latency, efficiency, total time in bed and number of awakenings were not significantly different between BASE and HT (P > 0.05). However, total time asleep was significantly reduced (P = 0.01; d = 1.46) and the duration periods of wakefulness after sleep onset was significantly greater during HT compared with BASE (P = 0.001; d = 1.14). Comparison between training groups showed latency was significantly higher for the 30HIT group compared to 90CONT (P = 0.02; d = 1.33). Nevertheless, there were no differences between training groups for sleep efficiency, total time in bed or asleep, wake after sleep onset, number of awakenings or awake duration (P > 0.05). Further, cold-water immersion recovery had no significant effect on sleep characteristics (P > 0.05). - Discussion Sleep plays an important role in athletic recovery and has previously been demonstrated to be influenced by both exercise training and thermal strain. Present data highlight the effect of HT on reduced sleep quality, specifically reducing total time asleep due to longer duration awake during awakenings after sleep onset. Importantly, although cold water recovery accelerates the removal of thermal load, this intervention did not blunt the negative effects of HT on sleep characteristics. - Conclusion Training in hot conditions may reduce both sleep quantity and quality and should be taken into consideration when administering this training intervention in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years a variety of mobile apps, wearable technologies and embedded systems have emerged that allow individuals to track the amount and the quality of their sleep in their own beds. Despite the widespread adoption of these technologies, little is known about the challenges that current users face in tracking and analysing their sleep. Hence we conducted a qualitative study to examine the practices of current users of sleep tracking technologies and to identify challenges in current practice. Based on data collected from 5 online forums for users of sleep-tracking technologies, we identified 22 different challenges under the following 4 themes: tracking continuity, trust, data manipulation, and data interpretation. Based on these results, we propose 6 design opportunities to assist researchers and practitioners in designing sleep-tracking technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migraine is a common disease in children and adolescents, affecting roughly 10% of school-aged children. Recent studies have revealed an increasing incidence of childhood migraine, but migraine remains an underrecognized and undertreated condition in the pediatric population. Migraine attacks are painful and disabling and can affect a child´s life in many ways. Effective drug treatment is usually needed. The new migraine drugs, triptans, were introduced at the beginning of the 1990s and have since been shown to be very effective in the treatment of migraine attacks in adults. Although they are widely used in adults, the acute treatment of migraine in children and adolescents is still based on paracetamol and nonsteroidal anti-inflammatory drugs. Some children can control their attacks satisfactorily with simple analgesics, but at least one-third need more powerful treatments. When this thesis work commenced, hardly any information existed on the efficacy and safety of triptans in children. The study aim of the thesis was to identify more efficient treatments of migraine for children and adolescents by investigating the efficacy of sumatriptan nasal spray and oral rizatriptan compared with placebo in them. Sleep has an impact on migraine in many aspects. Despite the clinical relevance and common manifestation of sleep in the context of migraine in children, very little research data on the true frequency of sleep exist. As sleeping is so often related to childhood migraine, it can be a confounding factor in clinical drug trials of migraine treatments in children and adolescents. How the results of a sleeping child should be analyzed is under continual debate. The aim of the thesis was also to clarify this as well as to evaluate the frequency of sleeping during migraine attacks in children and factors affecting frequency. Both nasal sumatriptan and oral rizatriptan were effective (superior to placebo), and well tolerated in treatment of migraine attacks in children and adolescents aged 8-17 and 6-17 years, respectively. No serous adverse effects were observed. The results of this work suggest that nasal sumatriptan 20 mg and rizatriptan 10 mg can be effectively and safely used to treat migraine attacks in adolescents aged over 12 years if more effective drugs than NSAIDs are needed. No difference was observed in efficacy or safety of nasal sumatriptan and rizatriptan between children aged younger than 12 years and older children, but because the treated number of patients under 12 years is still small, more studies are needed before sumatriptan or rizatriptan can be recommended for use in this population. Sleeping during migraine attacks was very common, and most children at least occasionally slept during an attack. Falling asleep was especially common in children under eight years of age and during the first hour after the onset of attack. Children who were able to sleep soon after attack onset were more likely pain-free at two hours. Sleeping probably both improves recovery from a migraine attack and is a sign of headache relief. Falling asleep should be classified as a sign of headache relief in clinical drug trials when studying migraine treatments in children and adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The most common pathway to development of diabetes foot ulcers is repetitive daily activity stress on the plantar surface of the neuropathic foot. Studies suggest an association between different diabetic foot complications and physical activity. However, to the best of the authors knowledge the steps/day and sleep patterns of people with diabetic foot ulcers has yet to be investigated. This observational study aims to investigate the physical activity and sleep patterns of three groups of adults with type 2 diabetes and different foot complications Methods Participants with type 2 diabetes were recruited into three groups: 1. those with no reported foot complications (DNIL), 2. those with diagnosis of neuropathy (DPN) and 3. those with a neuropathic ulcer (DFU). Exclusion criteria included peripheral arterial disease and mobility aid use. Participants wore a SenseWear Pro 3 Armband continuously for 7 days and completed an Epworth Sleepiness Scale. The Armband is a validated automated measure of activity (walking steps, average Metabolic Equivalent Task (MET), physical activity (>3 METs) duration), energy expenditure(kJ) (total and physical activity (>3 METs)) and sleep (duration). Data on age, sex, BMI, diabetes duration and HbA1c were also collected. Results Sixty-Six (14 DNIL, 22 DPN and 30 DFU's participants were recruited; 71% males, mean age 61(±12) years, diabetes duration 13(±9) years, HbA1c 8.3(±2.8), BMI 32.6(±5.9), average METs 1.2(0.2). Significant differences were reported in mean(SD) steps/day (5,859(±2,381) in DNIL; 5,007(±3,349) in DPN and 3,271(±2,417) in DFU's and daily energy expenditure (10,868(±1,307)kJ in DNIL; 11,060(±1,916)kJ in DPN and 13,006(± 3,559) in DFU's(p <0.05). No significant differences were reported for average METs, physical activity duration or energy expenditure, sleep time or Epworth score (p>0.1). Conclusions Preliminary findings suggest people with diabetes are sedentary. Results indicate that patients with a diabetic foot ulcer work significantly less than those with neuropathy or nil complications and use significantly more energy to do so. Sleep Parameters showed no differences. Recruitment is still on going.