422 resultados para singularities


Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT This dissertation investigates the, nature of space-time as described by the theory of general relativity. It mainly argues that space-time can be naturally interpreted as a physical structure in the precise sense of a network of concrete space-time relations among concrete space-time points that do not possess any intrinsic properties and any intrinsic identity. Such an interpretation is fundamentally based on two related key features of general relativity, namely substantive general covariance and background independence, where substantive general covariance is understood as a gauge-theoretic invariance under active diffeomorphisms and background independence is understood in the sense that the metric (or gravitational) field is dynamical and that, strictly speaking, it cannot be uniquely split into a purely gravitational part and a fixed purely inertial part or background. More broadly, a precise notion of (physical) structure is developed within the framework of a moderate version of structural realism understood as a metaphysical claim about what there is in the world. So, the developement of this moderate structural realism pursues two main aims. The first is purely metaphysical, the aim being to develop a coherent metaphysics of structures and of objects (particular attention is paid to the questions of identity and individuality of these latter within this structural realist framework). The second is to argue that moderate structural realism provides a convincing interpretation of the world as described by fundamental physics and in particular of space-time as described by general relativity. This structuralist interpretation of space-time is discussed within the traditional substantivalist-relationalist debate, which is best understood within the broader framework of the question about the relationship between space-time on the one hand and matter on the other. In particular, it is claimed that space-time structuralism does not constitute a 'tertium quid' in the traditional debate. Some new light on the question of the nature of space-time may be shed from the fundamental foundational issue of space-time singularities. Their possible 'non-local' (or global) feature is discussed in some detail and it is argued that a broad structuralist conception of space-time may provide a physically meaningful understanding of space-time singularities, which is not plagued by the conceptual difficulties of the usual atomsitic framework. Indeed, part of these difficulties may come from the standard differential geometric description of space-time, which encodes to some extent this atomistic framework; it raises the question of the importance of the mathematical formalism for the interpretation of space-time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objetives This methodological study explain and emphasize the extent and fertility of the narrative interview in qualitative research. Methods To describe the narrative method within the qualitative research. Results The qualitative research method is characterized by addressing issues related to the singularities of the field and individuals investigated, being the narrative interviews a powerful method for use by researchers who aggregate it. They allow the deepening of research, the combination of life stories with socio-historical contexts, making the understanding of the senses that produce changes in the beliefs and values that motivate and justify the actions of possible informants. Conclusion The use of narrative is an advantageous investigative resource in qualitative research, in which the narrative is a traditional form of communication whose purpose is to serve content from which the subjective experiences can be transmitted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose new spanning tests that assess if the initial and additional assets share theeconomically meaningful cost and mean representing portfolios. We prove their asymptoticequivalence to existing tests under local alternatives. We also show that unlike two-step oriterated procedures, single-step methods such as continuously updated GMM yield numericallyidentical overidentifyng restrictions tests, so there is arguably a single spanning test.To prove these results, we extend optimal GMM inference to deal with singularities in thelong run second moment matrix of the influence functions. Finally, we test for spanningusing size and book-to-market sorted US stock portfolios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The matching coefficients for the four-quark operators in NRQCD (NRQED) are calculated at one loop using dimensional regularization for ultraviolet and infrared divergences. The matching for the electromagnetic current follows easily from our results. Both the unequal and equal mass cases are considered. The role played by the Coulomb infrared singularities is explained in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dynamical systems approach to competition of Saffman-Taylor fingers in a Hele-Shaw channel is developed. This is based on global analysis of the phase space flow of the low-dimensional ordinary-differential-equation sets associated with the classes of exact solutions of the problem without surface tension. Some simple examples are studied in detail. A general proof of the existence of finite-time singularities for broad classes of solutions is given. Solutions leading to finite-time interface pinchoff are also identified. The existence of a continuum of multifinger fixed points and its dynamical implications are discussed. We conclude that exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space are unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding does not exist within the same class of solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed points is argued to be essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity by surface tension is proposed as the key point to formulate a generic dynamical solvability scenario for interfacial pattern selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review recent results on dynamical aspects of viscous fingering. The Saffman¿Taylor instability is studied beyond linear stability analysis by means of a weakly nonlinear analysis and the exact determination of the subcritical branch. A series of contributions pursuing the idea of a dynamical solvability scenario associated to surface tension in analogy with the traditional selection theory is put in perspective and discussed in the light of the asymptotic theory of Tanveer and co-workers. The inherently dynamical singular effects of surface tension are clarified. The dynamical role of viscosity contrast is explored numerically. We find that the basin of attraction of the Saffman¿Taylor finger depends on viscosity contrast, and that the sensitivity to this parameter is maximal in the usual limit of high viscosity contrast. The competing attractors are identified as closed bubble solutions. We briefly report on recent results and work in progress concerning rotating Hele-Shaw flows, topological singularities and wetting effects, and also discuss future directions in the context of viscous fingering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a general class of solutions to Einstein's field equations with two spacelike commuting Killing vectors by assuming the separation of variables of the metric components. The solutions can be interpreted as inhomogeneous cosmological models. We show that the singularity structure of the solutions varies depending on the different particular choices of the parameters and metric functions. There exist solutions with a universal big-bang singularity, solutions with timelike singularities in the Weyl tensor only, solutions with singularities in both the Ricci and the Weyl tensors, and also singularity-free solutions. We prove that the singularity-free solutions have a well-defined cylindrical symmetry and that they are generalizations of other singularity-free solutions obtained recently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-parameter class of simple models of two-dimensional dilaton gravity, which can be exactly solved including back-reaction effects, is investigated at both classical and quantum levels. This family contains the RST model as a special case, and it continuously interpolates between models having a flat (Rindler) geometry and a constant curvature metric with a nontrivial dilaton field. The processes of formation of black hole singularities from collapsing matter and Hawking evaporation are considered in detail. Various physical aspects of these geometries are discussed, including the cosmological interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this thesis is to study wavelets and their role in turbulence applications. Under scrutiny in the thesis is the intermittency in turbulence models. Wavelets are used as a mathematical tool to study the intermittent activities that turbulence models produce. The first section generally introduces wavelets and wavelet transforms as a mathematical tool. Moreover, the basic properties of turbulence are discussed and classical methods for modeling turbulent flows are explained. Wavelets are implemented to model the turbulence as well as to analyze turbulent signals. The model studied here is the GOY (Gledzer 1973, Ohkitani & Yamada 1989) shell model of turbulence, which is a popular model for explaining intermittency based on the cascade of kinetic energy. The goal is to introduce better quantification method for intermittency obtained in a shell model. Wavelets are localized in both space (time) and scale, therefore, they are suitable candidates for the study of singular bursts, that interrupt the calm periods of an energy flow through various scales. The study concerns two questions, namely the frequency of the occurrence as well as the intensity of the singular bursts at various Reynolds numbers. The results gave an insight that singularities become more local as Reynolds number increases. The singularities become more local also when the shell number is increased at certain Reynolds number. The study revealed that the singular bursts are more frequent at Re ~ 107 than other cases with lower Re. The intermittency of bursts for the cases with Re ~ 106 and Re ~ 105 was similar, but for the case with Re ~ 104 bursts occured after long waiting time in a different fashion so that it could not be scaled with higher Re.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Si on considère une famille de variétés projectives complexes non singulières, c"est un fait aujourd'hui bien connu que les possibles variétés singulières vers lesquelles peut dégénerer cette famille doivent vérifier certaines contraintes, parmi lesquelles une importante relation entre la cohomologie de la fibre singulière, la cohomologie de la fibre générique et la monodromie de la famille, qui est precise par le théorème local des cycles invariants prouvé par Clemens, Deligne et Steenbrink ([1], [4], [13]) : tous les cocycles de la fibre générique qui sont invariants par la monodromie autour d¡une fibre singulière proviennent par spécialisation de la cohomologie de cette fibre singulière.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let $X$ be a smooth complex algebraic variety. Morgan showed that the rational homotopy type of $X$ is a formal consequence of the differential graded algebra defined by the first term $E_{1}(X,W)$ of its weight spectral sequence. In the present work, we generalize this result to arbitrary nilpotent complex algebraic varieties (possibly singular and/or non-compact) and to algebraic morphisms between them. In particular, our results generalize the formality theorem of Deligne, Griffiths, Morgan and Sullivan for morphisms of compact Kähler varieties, filling a gap in Morgan"s theory concerning functoriality over the rationals. As an application, we study the Hopf invariant of certain algebraic morphisms using intersection theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We extend Deligne's weight filtration to the integer cohomology of complex analytic spaces (endowed with an equivalence class of compactifications). In general, the weight filtration that we obtain is not part of a mixed Hodge structure. Our purely geometric proof is based on cubical descent for resolution of singularities and Poincaré-Verdier duality. Using similar techniques, we introduce the singularity filtration on the cohomology of compactificable analytic spaces. This is a new and natural analytic invariant which does not depend on the equivalence class of compactifications and is related to the weight filtration.