920 resultados para singular potentials
Resumo:
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
Resumo:
Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a `footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by similar to 50% in generator potentials, to similar to 3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.
Resumo:
We study the effects of extended and localized potentials and a magnetic field on the Dirac electrons residing at the surface of a three-dimensional topological insulator like Bi2Se3. We use a lattice model to numerically study the various states; we show how the potentials can be chosen in a way which effectively avoids the problem of fermion doubling on a lattice. We show that extended potentials of different shapes can give rise to states which propagate freely along the potential but decay exponentially away from it. For an infinitely long potential barrier, the dispersion and spin structure of these states are unusual and these can be varied continuously by changing the barrier strength. In the presence of a magnetic field applied perpendicular to the surface, these states become separated from the gapless surface states by a gap, thereby giving rise to a quasi-one-dimensional system. Similarly, a magnetic field along with a localized potential can give rise to exponentially localized states which are separated from the surface states by a gap and thereby form a zero-dimensional system. Finally, we show that a long barrier and an impurity potential can produce bound states which are localized at the impurity, and an ``L''-shaped potential can have both bound states at the corner of the L and extended states which travel along the arms of the potential. Our work opens the way to constructing wave guides for Dirac electrons.
Resumo:
The effect of applied DC potentials on the bioleaching of a chalcopyrite concentrate in the presence of Acidithiobacillus ferrooxidans is discussed. Copper dissolution was the highest at an applied potential of +600mV (SCE), while all the dissolved copper got cathodically deposited at a negative potential of -600mV (SCE). Electrobioleaching at an applied potential of +600mV (SCE) was established at different pulp densities as a function of time. The effect of applied potentials and electrolytic currents on the activity and growth of bacterial cells was assessed Preadaptation of bacterial cells to the concentrate slurry and electrolytic growth conditions significantly enhanced copper dissolution. Electrochemical and biochemical mechanisms involved in electrobioleaching are illustrated with respect to oxidative dissolution and biocatalysis of anodic oxidation.
Resumo:
Oxygen potentials established by the equilibrium between three condensed phases, CaOss+CoOss+ Ca3Co2O6 and CoOss+Ca3Co2O6+Ca3CO3.93+O-alpha(9.36-delta), are measured as a function of temperature using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen as the reference electrode. Cation non-stoichiometry and oxygen non-stoichiometry in Ca3Co3.93+alpha O9.36-delta are determined using different techniques under defined conditions. Decomposition temperatures and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9.163 are calculated from the results. The standard entropy and enthalpy of formation of Ca3Co2O6 at 298.15 K are evaluated. Using thermodynamic data from this study and auxiliary information from the literature, phase diagram for the ternary system Ca-Co-O is computed. Isothermal sections at representative temperatures are displayed to demonstrate the evolution of phase relations with temperature. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature T-c approximate to 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO, is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.
Resumo:
We study moduli spaces M-X (r, c(1), c(2)) parametrizing slope semistable vector bundles of rank r and fixed Chern classes c(1), c(2) on a ruled surface whose base is a rational nodal curve. We showthat under certain conditions, these moduli spaces are irreducible, smooth and rational (when non-empty). We also prove that they are non-empty in some cases. We show that for a rational ruled surface defined over real numbers, the moduli space M-X (r, c(1), c(2)) is rational as a variety defined over R.
Resumo:
A systematic approach is proposed to obtain the interfacial interatomic potentials. By inverting ab initio adhesive energy curves for the metal-MgO ceramic interfaces, We derive interfacial potentials between Ag and O2-, Ag and Mg2+, Al and O2-, Al and Mg2+. The interfacial potentials, obtained from this method, demonstrate general features of bondings between metal atoms and ceramic ions.
Resumo:
Integran este número de la revista ponencias presentadas en Studia Hispanica Medievalia VIII: Actas de las IX Jornadas Internacionales de Literatura Española Medieval, 2008, y de Homenaje al Quinto Centenario de Amadis de Gaula.
Resumo:
In this paper, wavelet,transform is introduced to study the Lipschitz local singular exponent for characterising the local singularity behavior of fluctuating velocity in wall turbulence. I, is found that the local singular exponent is negative when the ejections and sweeps of coherent structures occur in a turbulent boundary layer.
Resumo:
In this paper, by use of the boundary integral equation method and the techniques of Green basic solution and singularity analysis, the dynamic problem of antiplane is investigated. The problem is reduced to solving a Cauchy singular integral equation in Laplace transform space. This equation is strictly proved to be equivalent to the dual integral equations obtained by Sih [Mechanics of Fracture, Vol. 4. Noordhoff, Leyden (1977)]. On this basis, the dynamic influence between two parallel cracks is also investigated. By use of the high precision numerical method for the singular integral equation and Laplace numerical inversion, the dynamic stress intensity factors of several typical problems are calculated in this paper. The related numerical results are compared to be consistent with those of Sih. It shows that the method of this paper is successful and can be used to solve more complicated problems. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Zero thickness crack tip interface elements for a crack normal to the interface between two materials are presented. The elements are shown to have the desired r(lambda-1) (0 < lambda < 1) singularity in the stress field at the crack tip and are compatible with other singular elements. The stiffness matrices of the quadratic and cubic interface element are derived. Numerical examples are given to demonstrate the applicability of the proposed interface elements for a crack perpendicular to the bimaterial interface.
Resumo:
It is shown that the variable power singularity of the strain field at the crack tip can be obtained by the simple technique of collapsing quadrilateral isoparametric elements into triangular elements around the crack tip and adequately shifting the side-nodes adjacent to this crack tip. The collapsed isoparametric elements have the desired singularity at crack tip along any ray. The strain expressions for a single element have been derived and in addition to the desired power singularity, additional singularities are revealed. Numerical examples have shown that triangular elements formed by collapsing one side lead to excellent results.
Resumo:
This paper presents an asymptotic analysis of the near-tip stress and strain fields of a sharp V-notch in a power law hardening material. First, the asymptotic solutions of the HRR type are obtained for the plane stress problem under symmetric loading. It is found that the angular distribution function of the radial stress sigma(r) presents rapid variation with the polar angle if the notch angle beta is smaller than a critical notch angle; otherwise, there is no such phenomena. Secondly, the asymptotic solutions are developed for antisymmetric loading in the cases of plane strain and plane stress. The accurate calculation results and the detailed comparisons are given as well. All results show that the singular exponent s is changeable for various combinations of loading condition and plane problem.
Resumo:
Optimized trial functions are used in quantum Monte Carlo and variational Monte Carlo calculations of the Li2(X 1Σ+g) potential curve. The trial functions used are a product of a Slater determinant of molecular orbitals multiplied by correlation functions of electron—nuclear and electron—electron separation. The parameters of the determinant and correlation functions are optimized simultaneously by reducing the deviations of the local energy EL (EL Ψ−1THΨT, where ΨT denotes a trial function) over a fixed sample. At the equilibrium separation, the variational Monte Carlo and quantum Monte Carlo methods recover 68% and 98% of the correlation energy, respectively. At other points on the curves, these methods yield similar accuracies.