929 resultados para simultaneous inference
Resumo:
We investigated memories of room-sized spatial layouts learned by sequentially or simultaneously viewing objects from a stationary position. In three experiments, sequential viewing (one or two objects at a time) yielded subsequent memory performance that was equivalent or superior to simultaneous viewing of all objects, even though sequential viewing lacked direct access to the entire layout. This finding was replicated by replacing sequential viewing with directed viewing in which all objects were presented simultaneously and participants’ attention was externally focused on each object sequentially, indicating that the advantage of sequential viewing over simultaneous viewing may have originated from focal attention to individual object locations. These results suggest that memory representation of object-to-object relations can be constructed efficiently by encoding each object location separately, when those locations are defined within a single spatial reference system. These findings highlight the importance of considering object presentation procedures when studying spatial learning mechanisms.
Resumo:
Sensing the mental, physical and emotional demand of a driving task is of primary importance in road safety research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable of sensing and reacting to the emotional state of the driver has been repeatedly advocated in the literature. Algorithms and sensors to identify patterns of human behavior, such as gestures, speech, eye gaze and facial expression, are becoming available by using low cost hardware: This paper presents a new system which uses surrogate measures such as facial expression (emotion) and head pose and movements (intention) to infer task difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections and roundabouts, and potentially dangerous situations. The resulting system, combining face expressions and head pose classification, is capable of recognizing dangerous events (such as crashes and near misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
Multiscale numerical modeling of the species balance and transport in the ionized gas phase and on the nanostructured solid surface complemented by the heat exchange model is used to demonstrate the possibility of minimizing the Gibbs-Thompson effect in low-temperature, low-pressure chemically active plasma-assisted growth of uniform arrays of very thin Si nanowires, impossible otherwise. It is shown that plasma-specific effects drastically shorten and decrease the dispersion of the incubation times for the nucleation of nanowires on non-uniform Au catalyst nanoparticle arrays. The fast nucleation makes it possible to avoid a common problem of small catalyst nanoparticle burying by amorphous silicon. These results explain a multitude of experimental observations on chemically active plasma-assisted Si nanowire growth and can be used for the synthesis of a range of inorganic nanowires for environmental, biomedical, energy conversion, and optoelectronic applications.
Resumo:
It is shown that the simultaneous saturation of Ni nanoparticles used as catalyst for vertically aligned carbon nanotube and nanocone arrays can be improved in low-temperature plasma- or ion-assisted processes compared with neutral gas-based routes. The results of hybrid multiscale numerical simulations of the catalyst nanoarrays (particle sizes of 2 and 10 nm) saturation with carbon show the possibility of reducing the difference in catalyst incubation times for smallest and largest catalyst particles by up to a factor of 2. This approach is generic and provides process conditions for simultaneous nucleation and growth of uniform arrays of vertically aligned nanostructures. © 2008 American Institute of Physics.
Resumo:
The present invention relates to genetically modified cells that are capable of optimal transgene expression by co-expressing a silencing suppressor whilst at the same time are also capable of silencing a gene, such as a naturally occurring gene of the cell. The present invention also relates to methods of producing the modified cells, as well as relates to processes for obtaining a genetically modified cell with a desired property.
Resumo:
This paper presents a novel method to rank map hypotheses by the quality of localization they afford. The highest ranked hypothesis at any moment becomes the active representation that is used to guide the robot to its goal location. A single static representation is insufficient for navigation in dynamic environments where paths can be blocked periodically, a common scenario which poses significant challenges for typical planners. In our approach we simultaneously rank multiple map hypotheses by the influence that localization in each of them has on locally accurate odometry. This is done online for the current locally accurate window by formulating a factor graph of odometry relaxed by localization constraints. Comparison of the resulting perturbed odometry of each hypothesis with the original odometry yields a score that can be used to rank map hypotheses by their utility. We deploy the proposed approach on a real robot navigating a structurally noisy office environment. The configuration of the environment is physically altered outside the robots sensory horizon during navigation tasks to demonstrate the proposed approach of hypothesis selection.
Resumo:
For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.