876 resultados para silver-loaded TiO2
Resumo:
Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Conservação e Restauro
Resumo:
TiO2 nanorodswere prepared by DC reactive magnetron sputtering technique and applied to dye-sensitized solar cells (DSSCs). The length of the TiO2 nanorods was varied from 1 μm to 6 μm. The scanning electronmicroscopy images showthat the nanorods are perpendicular to the substrate. Both the X-ray diffraction patterns and Raman scattering results show that the nanorods have an anatase phase; no other phase has been observed. (101) and the (220) diffraction peaks have been observed for the TiO2 nanorods. The (101) diffraction peak intensity remained constant despite the increase of nanorod length, while the intensity of the (220) diffraction peak increased almost linearly with the nanorod length. These nanorods were used as the working electrodes in DSSCs and the effect of the nanorod length on the conversion efficiency has been studied. An optimumphotoelectric conversion efficiency of 4.8% has been achieved for 4 μm length nanorods.
Resumo:
In this work tubular fiber reinforced specimens are tested for fatigue life. The specimens are biaxially loaded with tension and shear stresses, with a load angle β of 30° and 60° and a load ratio of R=0,1. There are many factors that affect fatigue life of a fiber reinforced material and the main goal of this work is to study the effects of load ratio R by obtaining S-N curves and compare them to the previous works (1). All the other parameters, such as specimen production, fatigue loading frequency and temperature, will be the same as for the previous tests. For every specimen, stiffness, temperature of the specimen during testing, crack counting and final fracture mode are obtained. Prior to testing, a study if the literature regarding the load ratio effects on composites fatigue life and with that review estimate the initial stresses to be applied in testing. In previous works (1) similar specimens have only been tested for a load ratio of R=-1 and therefore the behaviour of this tubular specimens for a different load ratio is unknown. All the data acquired will be analysed and compared to the previous works, emphasizing the differences found and discussing the possible explanations for those differences. The crack counting software, developed at the institute, has shown useful before, however different adjustments to the software parameters lead to different cracks numbers for the same picture, and therefore a better methodology will be discussed to improve the crack counting results. After the specimen’s failure, all the data will be collected and stored and fibre volume content for every specimen is also determinate. The number of tests required to make the S-N curves are obtained according to the existent standards. Additionally are also identified some improvements to the testing machine setup and to the procedures for future testing.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Acrylic bone cement (BC) is widely used as an anchor of artificial joints. Bacterial infection due to biofilm formation and inflammation are common and difficult to treat problems associated with commercial available BC formulations. Research on novel BC compositions is urgently needed. The main objective of this thesis was to develop a new biocompatible antibiotic-loaded BC with improved release profile. To achieve that aim several additives were incorporated, as an antibiotic (levofloxacin) to combat bacterial growth, an anti-inflammatory drug (diclofenac) to decrease the inflammatory process and two well-known and broadly used biopolymers, alginate and chitosan in order to increase matrix porosity, and in this way to intensify the amount of released drug. Novel BC formulations were tested in order to find the most suitable one that had potential to proceed to clinical application. Numerous tests were conducted as: a) evaluation of drug release profiles in different biomimetic media, b) mechanical and surface studies, c) microbiological activity testing against Staphylococcus aureus and d) in vitro biocompatibility assays (fibroblasts and osteoblasts). In general, the addition of biopolymers increased drug release, didn’t compromised BC mechanical properties and increased BC hydrophilicity. Microbiological testing revealed that Lev[BC]Chi was the only matrix that reduced significantly biofilm formation. On the contrary, alginate and diclofenac loading into BC seemed to increase biofilm growth. Biocompatibility studies showed some decrease in cell viability, in particularly on osteoblasts, mainly due to the high amounts of released drugs. In conclusion, the present work has shown that the matrix with more potential to proceed in further investigations was Lev[BC]Chi. Other conditions (namely additives and drugs concentrations) should be evaluated with the other tested BC matrices before being discharged.
Resumo:
The ideal agent for producing pleurodesis has not been identified. Talc, the most commonly used, poses several problems. Another possibility is silver nitrate, which was widely used in the past. PURPOSE: To determine the influence of the intrapleural instillation of lidocaine in producing a pleurodesis with silver nitrate, to define the effect of lidocaine in the maturation of the collagen fibers, and to confirm that the pleurodesis after silver nitrate is stronger than after talc. METHODS: We studied three groups of 8 rabbits. Two groups received 0.5% silver nitrate; in one we had previously injected 0.5 ml of 2% lidocaine. The third group received 400 mg/kg talc (2 ml). The animals were sacrificed 28 days after the injection, and the pleural spaces were assessed grossly for evidence of pleurodesis and microscopically for evidence of inflammation and fibrosis. The total amount of pleural collagen and the distribution of thick and thin collagen fibers were quantified. Collagen was identified using picrosirius red stain. RESULTS: In the two groups that received silver nitrate (without lidocaine: 3.5 + 03 and with lidocaine: 3.2 + 0.3), the macroscopic pleurodesis (scale 0 -- 4) was significantly (p = 0.001) better than that resulting from talc (1.6 + 0.2). The mean degree of pleural fibrosis induced by silver nitrate (3.5 + 0.2) was significantly (p = 0.004) higher than that induced by talc (1.9 + 0.1). The previous instillation of lidocaine resulted in a tendency for decreased amounts of fibrosis (3.1 + 0.4). The mean amount (10³mm²) of pleural collagen was significantly (p = 0.009) greater in the rabbits that received silver nitrate (116.9 + 22.7) than in those that received talc (10.7 + 3.4). The injection of lidocaine slightly reduced the collagen (80.1 + 30.3). The distribution of collagen fibers did not differ among the groups. CONCLUSION: This rabbit model clearly confirms that intrapleural silver nitrate is more effective than talc for producing pleurodesis. The previous intrapleural instillation of lidocaine results in a decreasing trend in the amount of collagen, but does not change the effectiveness of the pleural fusion or modify the process of collagen maturation.
Resumo:
The occupational risks in the nanotechnology research laboratories are an important topic since a great number of researchers are involved in this area. The risk assessment performed by both qualitative and quantitative methods is a necessary step for the management of the occupational risks. Risk assessment could be performed by qualitative methods that gather consensus in the scientific community. It is also possible to use quantitative methods, based in different technics and metrics, as indicative exposure limits are been settled by several institutions. While performing the risk assessment, the information on the materials used is very important and, if it is not updated, it could create a bias in the assessment results. The exposure to TiO2 nanoparticles risk was assessed in a research laboratory using a quantitative exposure method and qualitative risk assessment methods. It was found the results from direct-reading Condensation Particle Counter (CPC) equipment and the CB Nanotool seem to be related and aligned, while the results obtained from the use of the Stoffenmanager Nano seem to indicate a higher risk level.
Resumo:
This paper reports on the changes in the structural and morphological features occurring in a particular type of nanocomposite thin-film system, composed of Au nanoparticles (NPs) dispersed in a host TiO2 dielectric matrix. The structural and morphological changes, promoted by in-vacuum annealing experiments of the as-deposited thin films at different temperatures (ranging from 200 to 800 C), resulted in a well-known localized surface plasmon resonance (LSPR) phenomenon, which gave rise to a set of different optical responses that can be tailored for a wide number of applications, including those for optical-based sensors. The results show that the annealing experiments enabled a gradual increase of the mean grain size of the Au NPs (from 2 to 23 nm), and changes in their distributions and separations within the dielectric matrix. For higher annealing temperatures of the as-deposited films, a broad size distribution of Au NPs was found (sizes up to 100 nm). The structural conditions necessary to produce LSPR activity were found to occur for annealing experiments above 300 C, which corresponded to the crystallization of the gold NPs, with an average size strongly dependent on the annealing temperature itself. The main factor for the promotion of LSPR was the growth of gold NPs and their redistribution throughout the host matrix. On the other hand, the host matrix started to crystallize at an annealing temperature of about 500 C, which is an important parameter to explain the shift of the LSPR peak position to longer wavelengths, i.e. a red-shift.
Mechanism of extracellular silver nanoparticles synthesis by Stereum hirsutum and Fusarium oxysporum
Resumo:
The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.
Resumo:
Stents are rigid and perforated tubular structures, which are inserted into blood vessels in order to prevent or inhibit the constriction of blood flow, restoring the normal blood flow, when blood vessels are clogged, being used in 70% of angioplasties. These medical devices assume great importance in the treatment of cardiovascular diseases (CVD) which are the leading cause of death worldwide. In the European Union CVD account for 40% of deaths and assume an estimated annual cost of 196 billion euros[1]. Stents must possess certain requirements, in order to, adequately, perform its function, such as biocompatibility (so that its use does not c ause damage on the health of its user), mechanical strength, radiopacity (so that it is easy to view), longitudinal flexibility, ease of handling, corrosion resistance and having high strength and high radial expansion ability to recover. Stents can be made of different materials, but metals, particularly stainless steel, are the most common. However, metallic stents present several dRawbacks such as corrosion and restenosis, leading to health complications for the patient, or even death. In order to minimize these disadvantages, new materials, like fibrous materials, have been used [2]. Monofilaments present high potential for stents development because, in addition to its biocompatibility, these materials allow the application of various surface treatments, such as antibacterial coatings. Furthermore, monofilament exhibit excellent mechanical properties, like greater stiffness and good results when subjected to compression, tensile and bending forces, since these forces will be directly supported by the monofilament [3]. To minimize the reaction of the human body and Limit the adhesion of microorganisms to the stent surface, some coatings have been developed, including the use of novel metals with antimicrobial properties, like silver. The main objective of this study was the development of fibrous stents, incorporation of silver oxide nanocoating. For the development of the stent, polyester monofilaments with 0.27mm of diameter were used in braiding technology, with a mandrel diameter of 6mm and a braiding angle of 35⁰. The mechanical behaviour of the stent were evaluated by mechanical testing under longitudinal and radial compression, bending. The results of compressive strength tests are according with value from literature: 1.13 to 2.9 N for radial compression and 0. 16-5.28N to longitudinal compression. From literature is also possible to verify that stents must present 75% of unchanged diameter during the bending test and must possess a porosity between 70% and 80% [4]. The produced polyester stent presents values of 1.29N for radial compression, 0.23N for longitudinal compression, 80% of porosity and 85.5% of unchanged diameter, during bending tests. For the antibacterial functionalization, silver oxide nanocoatings were prepared, through reactive magnetron g, with an Ag target in an Ar +O2 atmosphere. In order to evaluate the nanostructure and morphology of the coatings, d ifferent technique s like X-ray diffraction (XRD), scanning electron microscopy (SEM) and and X- ray photoelectron spectroscopy (XPS were used. From the analyses of XRD it is possible to verify that the peaks corresponds to planes of Ag2 O and MATERIAIS 2015 Porto, 21-23 June, 2015 characterize a cubic phase. The presence of Ag2 O is corroborated by XPS spectrum, where it is possible to observe silver, not only, in oxide state, but a lso in mettalic state, and it is possible to verify the presence of silver clusters, confirmed by SEM analysis. Films’ roughness and topography, parameters influencing the wettability of the surface and microorganism adhesion, were measured by Atomic Force Microscopy (AFM), and it was observed that the roughness is very low (under 10 nm). Coatings’ hydrophobicity and surface tension parameters were determined by contact angle measurement, and it was verified the hydrophobic behavior of the coatings. For antibacterial tests were used Staphylococcus epidermidis strain (IE186) and Staphylococcus aureus(ATCC 6538), and halo inhibition zone tests were realized. Ag+release rates were studied by means of inductively coupled plasma mass spectrometry (ICP -MS). The obtained results suggest that silver oxide coatings do not modify significantly surface properties of the substrate, like hydrophobicity and roughness, and present antimicrobial properties for both bacteria used.
Resumo:
The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).