918 resultados para shear texture
Resumo:
This paper presents the details of a numerical study of a cold-formed steel beam known as LiteSteel Beam (LSB) subject to combined shear and bending actions. The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. They have a unique shape of a channel beam with two rectangular hollow flanges. To date, however, no investigation has been conducted into the strength of LSB sections under combined shear and bending actions. Hence a numerical study was undertaken to investigate the behaviour and strength of LSBs subject to combined shear and bending actions. In this research, finite element models of LSBs were developed to simulate the combined shear and bending behaviour and strength of LSBs. They were then validated by comparing their results with test results and used in a parametric study. Both experimental and finite element analysis results showed that the current design equations are not suitable for combined shear and bending capacities of LSBs. Hence improved design equations are proposed for the capacities of LSBs subject to combined shear and bending actions.
Resumo:
This LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs are commonly used as floor joists and bearers with web openings in buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Shear tests of LSBs with web openings have shown that there is up to 60% reduction in the shear capacity. Hence there is a need to improve the shear capacity of LSBs with web openings. A cost effective way to eliminate the shear capacity reduction is to stiffen the web openings using suitable stiffeners. Hence numerical studies were undertaken to investigate the shear capacity of LSBs with stiffened web openings. In this research, finite element models of LSBs with stiffened web openings in shear were developed to simulate the shear behaviour and strength of LSBs. Various stiffening methods using plate and LSB stiffeners attached to LSBs using both welding and screw-fastening were attempted. The developed models were then validated by comparing their results with experimental results and used in further studies. Both finite element and experimental results showed that the stiffening arrangements recommended by past research for cold-formed steel channel beams are not adequate to restore the shear strengths of LSBs with web openings. Therefore new stiffener arrangements were proposed for LSBs with web openings. This paper presents the details of this research project using numerical studies and the results.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Shear behaviour of LCBs with web openings is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations were therefore proposed for the shear strength of LCBs with web openings. This paper presents the details of this numerical study of LCBs with web openings, and the results.
Resumo:
Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of the LCBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LCBs with stiffened web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test results showed that the plate stiffeners established using AISI recommendations are inadequate to restore the shear strengths of LCBs with web openings. Hence new stiffener arrangements have been proposed for LCBs based on experimental results. This paper presents the details of this experimental study on the shear strength of lipped channel beams with stiffened web openings, and the results.
Resumo:
Complex flow datasets are often difficult to represent in detail using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows (i.e., complex dynamics and time-dependent). In this paper, we review two popular texture-based techniques and their application to flow datasets sourced from real research projects. The texture-based techniques investigated were Line Integral Convolution (LIC), and Image-Based Flow Visualisation (IBFV). We evaluated these techniques and in this paper report on their visualisation effectiveness (when compared with traditional techniques), their ease of implementation, and their computational overhead.
Resumo:
Detailed representations of complex flow datasets are often difficult to generate using traditional vector visualisation techniques such as arrow plots and streamlines. This is particularly true when the flow regime changes in time. Texture-based techniques, which are based on the advection of dense textures, are novel techniques for visualising such flows. We review two popular texture based techniques and their application to flow datasets sourced from active research projects. The techniques investigated were Line integral convolution (LIC) [1], and Image based flow visualisation (IBFV) [18]. We evaluated these and report on their effectiveness from a visualisation perspective. We also report on their ease of implementation and computational overheads.
Resumo:
A crustal-scale shear zone network at the fossil brittle-to-viscous transition exposed at Cap de Creus, NE Spain evolved by coeval fracturing and viscous, mylonitic overprinting of an existing foliation. Initial fracturing led to mylonitic shearing as rock softened in ductilely deformed zones surrounding the fractures. Mylonitic shear zones widened by lateral branching of fractures from these shear zones and by synthetic rotation of the existing foliation between the fractures and shear zones. Shear zones lengthened by a combination of fracturing and mylonitic shearing in front of the shear zone tips. Shear zones interconnected along and across their shearing planes, separating rhomb-shaped lozenges of less deformed rock. Lozenges were subsequently incorporated into the mylonitic shear zones by widening in the manner described above. In this way, deformation became homogeneous on the scale of initial fracturing (metre- to decametre-scale). In contrast, the shear zone network represents localisation of strain on a decametre-length scale. The strength of the continental crust at the time of coeval fracturing and viscous shearing is inferred to have decreased with time and strain, as fracturing evolved to mylonitic shearing, and as the shear zones coalesced to form a through-going network subparallel to the shearing plane. Crustal strength must therefore be considered as strain- and scale-dependent.
Resumo:
The geometry of ductile strain localization phenomena is related to the rheology of the deformed rocks. Both qualitative and quantitative rheological properties of natural rocks have been estimated from finite field structures such as folds and shear zones. We apply physical modelling to investigate the relationship between rheology and the temporal evolution of the width and transversal strain distribution in shear zones, both of which have been used previously as rheological proxies. Geologically relevant materials with well-characterized rheological properties (Newtonian, strain hardening, strain softening, Mohr-Coulomb) are deformed in a shear box and observed with Particle Imaging Velocimetry (PIV). It is shown that the width and strain distribution histories in model shear zones display characteristic finite responses related to material properties as predicted by previous studies. Application of the results to natural shear zones in the field is discussed. An investigation of the impact of 3D boundary conditions in the experiments demonstrates that quantitative methods for estimating rheology from finite natural structures must take these into account carefully.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process. It is commonly used as flexural members in residential, industrial and commercial buildings. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Test results have shown that the shear capacity of LSBs can be reduced considerably by the inclusion of web openings. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. A detailed experimental study consisting of 17 shear tests was therefore undertaken to investigate the shear behaviour and strength of LSBs with stiffened circular web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LSBs using a number of screw-fastening arrangements in order to develop a suitable stiffening arrangement for LSBs. Simply supported test specimens of LSBs with an aspect ratio of 1.5 were loaded at mid-span until failure. This paper presents the details of this experimental study of LSBs with stiffened web openings, and the results of their shear capacities and associated behavioural characteristics. Suitable screw-fastened plate stiffener arrangements have been recommended in order to restore the original shear capacity of LSBs.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of LCB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of LCB web panels are determined by assuming conservatively that the web panels are simply supported at the junction between their flange and web elements. Hence finite element analyses were conducted to investigate the elastic shear buckling behavior of LCBs. An improved equation for the higher elastic shear buckling coefficient of LCBs was proposed based on finite element analysis results and included in the ultimate shear capacity equations of the North American cold-formed steel codes. Finite element analyses show that relatively short span LCBs without flange restraints are subjected to a new combined shear and flange distortion action due to the unbalanced shear flow. They also show that significant post-buckling strength is available for LCBs subjected to shear. New equations were also proposed in which post-buckling strength of LCBs was included.
Resumo:
Abstract: LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a simultaneous cold-forming and dual electric resistance welding process. It is commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. A cost effective method of eliminating the detrimental effects of a large web opening is to attach suitable stiffeners around the web openings of LSBs. Experimental and numerical studies were undertaken to investigate the shear behaviour and strength of LSBs with circular web openings reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses. Both welding and varying screw-fastening arrangements were used to attach these stiffeners to the web of LSBs. Finite element models of LSBs with stiffened web openings in shear were developed to simulate their shear behaviour and strength of LSBs. They were then validated by comparing the results with experimental test results and used in a detailed parametric study. These studies have shown that plate stiffeners were the most suitable, however, their use based on the current American standards was found to be inadequate. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses have been proposed for LSBs with web openings to restore their original shear capacity. This paper presents the details of the numerical study and the results.
Resumo:
In present work, numerical solution is performed to study the confined flow of power-law non Newtonian fluids over a rotating cylinder. The main purpose is to evaluate drag and thermal coefficients as functions of the related governing dimensionless parameters, namely, power-law index (0.5 ≤ n ≤ 1.4), dimensionless rotational velocity (0 ≤ α ≤ 6) and the Reynolds number (100 ≤ Re ≤ 500). Over the range of Reynolds number, the flow is known to be steady. Results denoted that the increment of power law index and rotational velocity increases the drag coefficient due to momentum diffusivity improvement which is responsible for low rate of heat transfer, because the thicker the boundary layer, the lower the heat transfer is implemented.
Resumo:
A study of the bulk formation of YBa2Cu3O7-x from the Y2BaCuO5 plus liquid regime reveals that phase formation occurs at appreciable rates below 950°C in air. This result has been observed for phase-pure YBa2Cu3O7-x starting material given two types of heat treatment: held at 1100°C and slow-cooled from 1030°C at 6°C/h or heat-treated isothermally. Differential thermal analysis, with a cooling rate of 10°C/min indicates that the degree of undercooling for the peritectic formation of YBa2Cu3O7-x is greater than 100°C. © 1994.