913 resultados para serial dependence
Pressure dependence of 35Cl NQR in hexachloro- (N3P3Cl6) and octachloro- (N4P4Cl8) cyclophosphazenes
Resumo:
High pressure studies of 35Cl NQR in the hexachlorocyclophosphazene N3P3Cl6 and in the K- and T-forms of octachlorocyclophospha.
Resumo:
In this paper, we present results on water flow past randomly textured hydrophobic surfaces with relatively large surface features of the order of 50 µm. Direct shear stress measurements are made on these surfaces in a channel configuration. The measurements indicate that the flow rates required to maintain a shear stress value vary substantially with water immersion time. At small times after filling the channel with water, the flow rates are up to 30% higher compared with the reference hydrophilic surface. With time, the flow rate gradually decreases and in a few hours reaches a value that is nearly the same as the hydrophilic case. Calculations of the effective slip lengths indicate that it varies from about 50 µm at small times to nearly zero or “no slip” after a few hours. Large effective slip lengths on such hydrophobic surfaces are known to be caused by trapped air pockets in the crevices of the surface. In order to understand the time dependent effective slip length, direct visualization of trapped air pockets is made in stationary water using the principle of total internal reflection of light at the water-air interface of the air pockets. These visualizations indicate that the number of bright spots corresponding to the air pockets decreases with time. This type of gradual disappearance of the trapped air pockets is possibly the reason for the decrease in effective slip length with time in the flow experiments. From the practical point of usage of such surfaces to reduce pressure drop, say, in microchannels, this time scale of the order of 1 h for the reduction in slip length would be very crucial. It would ultimately decide the time over which the surface can usefully provide pressure drop reductions. ©2009 American Institute of Physics
Resumo:
Metal oxide semiconductor (MOS) sensors are a class of chemical sensor that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares. Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity.
Resumo:
Metal oxide semiconductor (MOS) sensors are a class of chemical sensors that have potential for being a practical core sensor module for an electronic nose system in various environmental monitoring applications. However, the responses of these sensors may be affected by changes in humidity and this must be taken into consideration when developing calibration models. This paper characterises the humidity dependence of a sensor array which consists of 12 MOS sensors. The results were used to develop calibration models using partial least squares (PLS). Effects of humidity on the response of the sensor array and predictive ability of partial least squares are discussed. It is shown that partial least squares can provide proper calibration models to compensate for effects caused by changes in humidity. Special Issue: Selected Paper from the 12th International Symposium on Olfaction and Electronic Noses - ISOEN 2007, International Symposium on Olfaction and Electronic Noses.
Resumo:
Recent studies (I-7) clearly indicate a strong dependence of fatigue threshold parameter, A K on grain size in several alloy systems. Attempts to explain these observations on the basis of crat~tortuosity (1,8), fracture surface roughness (5,9) and crack closure (6) appear to present a fairly clear picture of the mechanisms that cause a reduction in crack growth rates at threshold. In general, it has been shown that coarse grained microstructures exhibit higher fatigue threshold in low carbon steels (1,5) aluminium alloys (7) and titanium alloys (6). In spite of these observations, there exists (10-1#) considerable uncertainity about the manner in which the AK~L depends on prior austenitic grain size in quenched and tempered steels. Studies in quenched and tempered steels demonstrating both an increase (3,12,14) as well as a decrease (11,12) in AKth with an increase in prior austenitic grain size can be sought to illustrate this point. Occasionally , the absence of any sensitivity of AKth to the variations in prior austenitJc grain size has also been reported (11,13). While a few investigators (5-7) comfortably rationalised the grain size effects on AK~L on the basis of crack closure by a comparison in terms of the closure-free component of the thresho~Ifc~, AK -f such an approach has yet to be extended to high strength steels, An attempt has been made in t~et ,pthrg sent study to explai. n the effect of pri, or austeniti.c grain size on &Kth on the basis of crack closure measurements in a high strength steel.
Resumo:
A number of bile acid derived photoinduced electron transfer (PET) based sensors for metal ions are prepared. A general strategy for designing the sensor with a modular nature allows for making different molecules capable of sensing different metal ions by a change in the fluorophore and receptor unit. Keeping the basic molecular structure the same, different bile acid base fluoroionophores were prepared inorder to achieve the highest sensitivity toward the metal ions. Thesensors showed similar binding constants for the same metal ion, but the degree Of fluorescence enhancement upon addition of the metal salts were different. The sensitivities of the sensors towards a certain metal were determined from the observed fluorescence enhancement upon addition of the metal salt.
Resumo:
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system, characterized especially by myelin and axon damage. Cognitive impairment in MS is common but difficult to detect without a neuropsychological examination. Valid and reliable methods are needed in clinical practice and research to detect deficits, follow their natural evolution, and verify treatment effects. The Paced Auditory Serial Addition Test (PASAT) is a measure of sustained and divided attention, working memory, and information processing speed, and it is widely used in MS patients neuropsychological evaluation. Additionally, the PASAT is the sole cognitive measure in an assessment tool primarly designed for MS clinical trials, the Multiple Sclerosis Functional Composite (MSFC). The aims of the present study were to determine a) the frequency, characteristics, and evolution of cognitive impairment among relapsing-remitting MS patients, and b) the validity and reliability of the PASAT in measuring cognitive performance in MS patients. The subjects were 45 relapsing-remitting MS patients from Seinäjoki Central Hospital, Department of Neurology and 48 healthy controls. Both groups underwent comprehensive neuropsychological assessments, including the PASAT, twice in a one-year follow-up, and additionally a sample of 10 patients and controls were evaluated with the PASAT in serial assessments five times in one month. The frequency of cognitive dysfunction among relapsing-remitting MS patients in the present study was 42%. Impairments were characterized especially by slowed information processing speed and memory deficits. During the one-year follow-up, the cognitive performance was relatively stable among MS patients on a group level. However, the practice effects in cognitive tests were less pronounced among MS patients than healthy controls. At an individual level the spectrum of MS patients cognitive deficits was wide in regards to their characteristics, severity, and evolution. The PASAT was moderately accurate in detecting MS-associated cognitive impairment, and 69% of patients were correctly classified as cognitively impaired or unimpaired when comprehensive neuropsychological assessment was used as a "gold standard". Self-reported nervousness and poor arithmetical skills seemed to explain misclassifications. MS-related fatigue was objectively demonstrated as fading performance towards the end of the test. Despite the observed practice effect, the reliability of the PASAT was excellent, and it was sensitive to the cognitive decline taking place during the follow-up in a subgroup of patients. The PASAT can be recommended for use in the neuropsychological assessment of MS patients. The test is fairly sensitive, but less specific; consequently, the reasons for low scores have to be carefully identified before interpreting them as clinically significant.
Resumo:
We have probed the size dependency of the first hyperpolarizability (b) of copper nanoparticles by hyper-Rayleigh scattering (HRS). Our results indicate that second harmonic generation (SHG) originates predominantly at the surface of the nanoparticles as long as the size (d) remains small compared to the wavelength (k). However, volume contribution to the SH response due to the retardation effect becomes important when particle size grows beyond the `small particle limit'. There is a significant dispersion in the b values of copper nanoparticles owing tothe presence of the strong surface plasmon resonance (SPR) band.
Resumo:
The resistivity of selenium-doped n-InP single crystal layers grown by liquid-phase epitaxy with electron concentrations varying from 6.7 x 10$^18$ to 1.8 x 10$^20$ cm$^{-3}$ has been measured as a function of hydrostatic pressure up to 10 GPa. Semiconductor-metal transitions were observed in each case with a change in resistivity by two to three orders of magnitude. The transition pressure p$_c$ decreased monotonically from 7.24 to 5.90 GPa with increasing doping concentration n according to the relation $p_c = p_o [1 - k(n/n_m)^a]$, where n$_m$ is the concentration (per cubic centimetre) of phosphorus donor sites in InP atoms, p$_o$ is the transition pressure at low doping concentrations, k is a constant and $\alpha$ is an exponent found experimentally to be 0.637. The decrease in p$_c$ is considered to be due to increasing internal stress developed at high concentrations of ionized donors. The high-pressure metallic phase had a resistivity (2.02-6.47) x 10$^{-7}$ $\Omega$ cm, with a positive temperature coefficient dependent on doping.
Resumo:
Multi-access techniques are widely used in computer networking and distributed multiprocessor systems. On-the-fly arbitration schemes permit one of the many contenders to access the medium without collisions. Serial arbitration is cost effective but is slow and hence unsuitable for high-speed multiprocessor environments supporting very high data transfer rates. A fully parallel arbitration scheme takes less time but is not practically realisable for large numbers of contenders. In this paper, a generalised parallel-serial scheme is proposed which significantly reduces the arbitration time and is practically realisable.
Resumo:
The dynamics of reactions with low internal barriers are studied both analytically and numerically for two different models. Exact expressions for the average rate,kI, are obtained by solving the associated first passage time problems. Both the average rate constant, kI, and the numerically calculated long-time rate constant, kL, show a fractional power law dependence on the barrier height for very low barriers. The crossover of the reaction dynamics from low to high barrier is investigated.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.
Resumo:
In the present paper, the size and strain rate effects on ultra-thin < 100 >/{100} Cu nanowires at an initial temperature of 10 K have been discussed. Extensive molecular dynamics (MD) simulations have been performed using Embedded atom method (EAM) to investigate the structural behaviours and properties under high strain rate. Velocity-Verlet algorithm has been used to solve the equation of motions. Two different thermal loading cases have been considered: (i) Isothermal loading, in which Nose-Hoover thermostat is used to maintain the constant system temperature, and (ii) Adiabatic loading, i.e., without any thermostat. Five different wire cross-sections were considered ranging from 0.723 x 0.723 nm(2) to 2.169 x 2.169 nm(2) The strain rates used in the present study were 1 x 10(9) s(-1), 1 x 10(8) s(-1), and 1 x 10(7) s(-1). The effect of strain rate on the mechanical properties of copper nanowires was analysed, which shows that elastic properties are independent of thermal loading for a given strain rate and cross-sectional dimension of nanowire. It showed a decreasing yield stress and yield strain with decreasing strain rate for a given cross- section. Also, a decreasing yield stress and increasing yield strain were observed for a given strain rate with increasing cross-sectional area. Elastic modulus was found to be similar to 100 GPa, which was independent of processing temperature, strain rate, and size for a given initial temperature. Reorientation of < 100 >/{100} square cross-sectional copper nanowire into a series of stable ultra-thin Pentagon copper nanobridge structures with dia of similar to 1 nm at 10 K was observed under high strain rate tensile loading. The effect of isothermal and adiabatic loading on the formation of such pentagonal nanobridge structure has been discussed.
Resumo:
The worldwide health burden caused by the tobacco epidemic highlights the importance of study-ing determinants of smoking behaviour and key factors sustaining nicotine dependence. Despite vast-ranging preventive efforts, smoking remains one of the most deleterious health behaviours, and its genetic and environmental factors warrant continuous investigation. The heritability of smoking behaviour and nicotine dependence has been suggested to be relatively high. Earlier smoking behaviour, nicotine dependence, socio-economic position and demographic factors have all been shown to be associated with smoking cessation. This thesis aimed to examine various aspects of smoking behaviour and nicotine dependence from an epidemiological and genetic per-spective. Data for Studies I and IV were obtained from the Older Finnish Twin Cohort, a postal health sur-vey conducted in 1975, 1981 and 1990 on same-sexed pairs and in 1996-1997 on male-female adult pairs. The number of ever-smoking participants was 8941 in Study I and 3069 in Study IV. Data for Studies II and III came from the Family Study of Cigarette Smoking - Vulnerability to Nicotine Addiction. This study is linked to the Older Finnish Twin Cohort with new data collec-tion during 2001-2006 that focused on smoking twin pairs and their family members. The meas-ures included intensive telephone interviews, blood samples and additional postal questionnaires. The numbers of ever-smoking participants was 1370 in Study II and 529 in Study III. Study I examined whether a genetic component underlies smoking behaviour among Finnish adults. Genetic factors were important in the amount smoked and smoking cessation, with about half of the phenotypic differences explained by genetic variance. A novel finding was that genetic influences on amount smoked and smoking cessation were largely independent of genetic influ-ences on age at initiation. This result has implications for defining phenotypes in the search for genes underlying smoking behaviour. Furthermore, even if smoking initiation is postponed to a later age, potential vulnerability to subsequent nicotine dependence cannot be completely inhib-ited. Study II investigated the effect of genetic and environmental factors on nicotine dependence, as measured by the novel multidimensional Nicotine Dependence Syndrome Scale (NDSS). This scale was validated in the Finnish data. The NDSS correlated highly with other established nico-tine dependence scales (FTND and DSM-IV), suggesting that this new scale would be a feasible and valid measure for identifying nicotine-dependent smokers among the ever-smoking popula-tion. About one-third of the phenotypic variation in nicotine dependence in this sample was ex-plained by genetic influences. Study III aimed at identifying chromosomal regions harbouring genes that influence smoking be-haviour and nicotine dependence. Linkage analysis of family data revealed that for smoker and nicotine dependence phenotypes as well as for co-morbidity between nicotine dependence and alcohol use signals on specific chromosome regions (chromosomes 2q33, 5q12, 5q34 7q21, 7q31, 10q25, 11p15, 20p13) exist. Results further support the hypothesis that smoking behaviour phe-notypes have a genetic background. Study IV examined associations of smoking behaviour, socio-economic position and transition of marital status with smoking cessation. Indicators of socio-economic position were important pre-dictors of smoking cessation even when adjusted for previous smoking behaviour. Getting married was associated with an increased probability of cessation in men, a finding confirmed among dis-cordant twin pairs. Thus, having a partner appears to have a positive impact on smoking cessation. In conclusion, nicotine dependence and smoking behaviour demonstrate significant genetic liabil-ity, but also substantial environmental influences among Finnish adults. Smoking initiation should be prevented or at least postponed to a later age. Although genetic factors are important in nicotine dependence and smoking behaviour, societal actions still have a primary role in tobacco control and smoking prevalence. Future studies should examine the complex interactions between genetic and environmental factors in nicotine dependence.
Resumo:
Objective: The aim of the present study was to examine co-twin dependence and its impact on twins' social contacts, leisure-time activities and psycho-emotional well-being. The role of co-twin dependence was also examined as a moderator of genetic and environmental influences on alcohol use in adolescence and in early adulthood. Methods: The present report is based on the Finnish Twin Cohort Study (FinnTwin16), a population-based study of five consecutive birth cohorts of Finnish twins born in the years 1975-1979. Baseline assessments were collected through mailed questionnaires, within two months of the twins' sixteenth birthday yielding replies from 5563 twin individuals. All respondent twins were sent follow-up questionnaires at ages of 17, 18½, and in early adulthood, when twins were 22-27 years old. Measures: The questionnaires included a survey of health habits and attitudes, a symptom checklist and questions about twins' relationships with parents, peers and co-twin. Measures used were twins' self-reports of their own dependence and their co-twin's dependence at age 16, reports of twins' leisure-time activities and social contacts, alcohol use, psychological distress and somatic symptoms both in adolescence and in early adulthood. Results: In the present study 25.6% of twins reported dependence on their co-twin. There were gender and zygosity differences in dependence, females and MZ twins were more likely to report dependence than males and DZ twins. Co-twin dependence can be viewed on one hand as an individual characteristic, but on the other hand as a pattern of dyadic interaction that is mutually regulated and reciprocal. Most of the twins (80.7%) were either concordantly co-twin dependent or concordantly co-twin independent. The associations of co-twin dependence with twins' social interactions and psycho-emotional characteristics were relatively consistent both in adolescence and in early adulthood. Dependence was related to higher contact frequency and a higher proportion of shared leisure-time activities between twin siblings at the baseline and the follow-up. Additionally co-twin dependence was associated with elevated levels of psycho-emotional distress and somatic complaints, especially in adolescence. In the framework of gene-environment interaction, these results suggest that the genetic contribution to individual differences in drinking patterns is dependent on the nature of the pair-wise relationship of twin siblings. Conclusions: The results of this study indicate that co-twin dependence is a genuine feature of the co-twin relationship and shows the importance of studying the impact of various features of co-twin relationships on individual twins' social and psycho-emotional life and well-being. Our study also offers evidence that differences in inter-personal relationships contribute to the effects of genetic propensities.