973 resultados para sequential data
Resumo:
Agonistic interactions between animals are often settled by the use of repeated signals which advertise the resource-holding potential of the sender. According to the sequential assessment game this repetition increases the accuracy with which receivers may assess the signal, but under the cumulative assessment model the repeated performances accumulate to give a signal of stamina. These models may be distinguished by the temporal pattern of signalling they predict and by the decision rules used by the contestants. Hermit crabs engage in shell fights over possession of the gastropod shells that they inhabit. During these interactions the two roles of signaller and receiver may be examined separately because they are fixed for the duration of the encounter. Attackers rap their shell against that of the defender in a series of bouts whereas defenders remain tightly withdrawn into their shells for the duration of the contest. At the end of a fight the attacker may evict the defender from its shell or decide to give up without first effecting an eviction; the decision for defenders is either to maintain a grip on its shell or to release the shell and allow itself to be evicted. We manipulated fatigue levels separately for attackers and defenders, by varying the oxygen concentration of the water that they are held in prior to fighting, and examined the effects that this has on the likelihood of each decision and on the temporal pattern of rapping. We show that the vigour of rapping and the likelihood of eviction are reduced when the attacker is subjected to low oxygen but that this treatment has no effect on rates of eviction when applied to defenders. We conclude that defenders compare the vigour of rapping with an absolute threshold rather than with a relative threshold when making their decision. The data are compatible with the cumulative assessment model and with the idea that shell rapping signals the stamina of attackers, but do not fit the predictions of the sequential assessment game.
Resumo:
Traditional static analysis fails to auto-parallelize programs with a complex control and data flow. Furthermore, thread-level parallelism in such programs is often restricted to pipeline parallelism, which can be hard to discover by a programmer. In this paper we propose a tool that, based on profiling information, helps the programmer to discover parallelism. The programmer hand-picks the code transformations from among the proposed candidates which are then applied by automatic code transformation techniques.
This paper contributes to the literature by presenting a profiling tool for discovering thread-level parallelism. We track dependencies at the whole-data structure level rather than at the element level or byte level in order to limit the profiling overhead. We perform a thorough analysis of the needs and costs of this technique. Furthermore, we present and validate the belief that programs with complex control and data flow contain significant amounts of exploitable coarse-grain pipeline parallelism in the program’s outer loops. This observation validates our approach to whole-data structure dependencies. As state-of-the-art compilers focus on loops iterating over data structure members, this observation also explains why our approach finds coarse-grain pipeline parallelism in cases that have remained out of reach for state-of-the-art compilers. In cases where traditional compilation techniques do find parallelism, our approach allows to discover higher degrees of parallelism, allowing a 40% speedup over traditional compilation techniques. Moreover, we demonstrate real speedups on multiple hardware platforms.
Resumo:
Data flow techniques have been around since the early '70s when they were used in compilers for sequential languages. Shortly after their introduction they were also consideredas a possible model for parallel computing, although the impact here was limited. Recently, however, data flow has been identified as a candidate for efficient implementation of various programming models on multi-core architectures. In most cases, however, the burden of determining data flow "macro" instructions is left to the programmer, while the compiler/run time system manages only the efficient scheduling of these instructions. We discuss a structured parallel programming approach supporting automatic compilation of programs to macro data flow and we show experimental results demonstrating the feasibility of the approach and the efficiency of the resulting "object" code on different classes of state-of-the-art multi-core architectures. The experimental results use different base mechanisms to implement the macro data flow run time support, from plain pthreads with condition variables to more modern and effective lock- and fence-free parallel frameworks. Experimental results comparing efficiency of the proposed approach with those achieved using other, more classical, parallel frameworks are also presented. © 2012 IEEE.
Resumo:
The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.
Resumo:
Using data from the National Longitudinal Survey of Youth (NLSY), we re-examine the effect of formal on-the-job training on mobility patterns of young American workers. By employing parametric duration models, we evaluate the economic impact of training on productive time with an employer. Confirming previous studies, we find a positive and statistically significant impact of formal on-the-job training on tenure with the employer providing the training. However, the expected net duration of the time spent in the training program is generally not significantly increased. We proceed to document and analyze intra-sectoral and cross-sectoral mobility patterns in order to infer whether training provides firm-specific, industry-specific, or general human capital. The econometric analysis rejects a sequential model of job separation in favor of a competing risks specification. We find significant evidence for the industry-specificity of training. The probability of sectoral mobility upon job separation decreases with training received in the current industry, whether with the last employer or previous employers, and employment attachment increases with on-the-job training. These results are robust to a number of variations on the base model.
Resumo:
Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.
Resumo:
During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
Resumo:
Oral nutrition supplements (ONS) are routinely prescribed to those with, or at risk of, malnutrition. Previous research identified poor compliance due to taste and sweetness. This paper investigates taste and hedonic liking of ONS, of varying sweetness and metallic levels, over consumption volume; an important consideration as patients are prescribed large volumes of ONS daily. A sequential descriptive profile was developed to determine the perception of sensory attributes over repeat consumption of ONS. Changes in liking of ONS following repeat consumption were characterised by a boredom test. Certain flavour (metallic taste, soya milk flavour) and mouthfeel (mouthdrying, mouthcoating) attributes built up over increased consumption volume (p 0.002). Hedonic liking data from two cohorts, healthy older volunteers (n = 32, median age 73) and patients (n = 28, median age 85), suggested such build-up was disliked. Efforts made to improve the palatability of ONS must take account of the build up of taste and mouthfeel characteristics over increased consumption volume.
Resumo:
In clinical trials, situations often arise where more than one response from each patient is of interest; and it is required that any decision to stop the study be based upon some or all of these measures simultaneously. Theory for the design of sequential experiments with simultaneous bivariate responses is described by Jennison and Turnbull (Jennison, C., Turnbull, B. W. (1993). Group sequential tests for bivariate response: interim analyses of clinical trials with both efficacy and safety endpoints. Biometrics 49:741-752) and Cook and Farewell (Cook, R. J., Farewell, V. T. (1994). Guidelines for monitoring efficacy and toxicity responses in clinical trials. Biometrics 50:1146-1152) in the context of one efficacy and one safety response. These expositions are in terms of normally distributed data with known covariance. The methods proposed require specification of the correlation, ρ between test statistics monitored as part of the sequential test. It can be difficult to quantify ρ and previous authors have suggested simply taking the lowest plausible value, as this will guarantee power. This paper begins with an illustration of the effect that inappropriate specification of ρ can have on the preservation of trial error rates. It is shown that both the type I error and the power can be adversely affected. As a possible solution to this problem, formulas are provided for the calculation of correlation from data collected as part of the trial. An adaptive approach is proposed and evaluated that makes use of these formulas and an example is provided to illustrate the method. Attention is restricted to the bivariate case for ease of computation, although the formulas derived are applicable in the general multivariate case.
Resumo:
A number of authors have proposed clinical trial designs involving the comparison of several experimental treatments with a control treatment in two or more stages. At the end of the first stage, the most promising experimental treatment is selected, and all other experimental treatments are dropped from the trial. Provided it is good enough, the selected experimental treatment is then compared with the control treatment in one or more subsequent stages. The analysis of data from such a trial is problematic because of the treatment selection and the possibility of stopping at interim analyses. These aspects lead to bias in the maximum-likelihood estimate of the advantage of the selected experimental treatment over the control and to inaccurate coverage for the associated confidence interval. In this paper, we evaluate the bias of the maximum-likelihood estimate and propose a bias-adjusted estimate. We also propose an approach to the construction of a confidence region for the vector of advantages of the experimental treatments over the control based on an ordering of the sample space. These regions are shown to have accurate coverage, although they are also shown to be necessarily unbounded. Confidence intervals for the advantage of the selected treatment are obtained from the confidence regions and are shown to have more accurate coverage than the standard confidence interval based upon the maximum-likelihood estimate and its asymptotic standard error.
Resumo:
Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.
The sequential analysis of repeated binary responses: a score test for the case of three time points
Resumo:
In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.
Resumo:
While planning the GAIN International Study of gavestinel in acute stroke, a sequential triangular test was proposed but not implemented. Before the trial commenced it was agreed to evaluate the sequential design retrospectively to evaluate the differences in the resulting analyses, trial durations and sample sizes in order to assess the potential of sequential procedures for future stroke trials. This paper presents four sequential reconstructions of the GAIN study made under various scenarios. For the data as observed, the sequential design would have reduced the trial sample size by 234 patients and shortened its duration by 3 or 4 months. Had the study not achieved a recruitment rate that far exceeded expectation, the advantages of the sequential design would have been much greater. Sequential designs appear to be an attractive option for trials in stroke. Copyright 2004 S. Karger AG, Basel
Resumo:
Sequential crystallization of poly(L-lactide) (PLLA) followed by poly(epsilon-caprolactone) (PCL) in double crystalline PLLA-b-PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122 degrees C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42 degrees C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42 degrees C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystalli zation of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122 degrees C and after 15 min at 42 degrees C.