925 resultados para sequencing batch reactors
Resumo:
The growth, maintenance and lysis processes of Nitrobacter were characterised. A Nitrobacter culture was enriched in a sequencing batch reactor (SBR). Fluorescent in situ hybridisation showed that Nitrobacter constituted 73% of the bacterial population. Batch tests were carried out to measure the oxygen uptake rate and/or nitrite consumption rate when both nitrite and CO2 were in excess, and in the absence of either of these two substrates. The results obtained, along with the SBR performance data, allowed the determination of the maintenance coefficient and in situ cell lysis rate of Nitrobacter. Nitrobacter spends a significant amount of energy for maintenance, which varies considerably with the specific growth rate. At maximum growth, Nitrobacter consume nitrite at a rate of 0.042 mgN/mgCOD(biomass)center dot h for maintenance purposes, which increases more than threefold to 0.143 mgN/mgCOD(biomass)center dot h in the absence of growth. In the SBR, where Nitrobacter grew at 40% of its maximum growth rate, a maintenance coefficient of 0.113 mgN/mgCOD center dot h was found, resulting in 42% of the total amount of nitrite being consumed for maintenance. The above three maintenance coefficient values obtained at different growth rates appear to support the maintenance model proposed in Pirt (1982). The in situ lysis rate of Nitrobacter was determined to be 0.07/day under aerobic conditions at 22 C and pH 7.3. Further, the maximum specific growth rate of Nitrobacter was estimated to be 0.02/h (0.48/day). The affinity constant of Nitrobacter with respect to nitrite was determined to be 1.50 mgNO(2)(-)-N/L, independent of the presence or absence of CO2. (c) 2006 Wiley Periodicals, Inc.
Resumo:
The inhibitory effects of nitrite (NO2-)/free nitrous acid (HNO2-FNA) on the metabolism of Nitrobacter were investigated using a method allowing the decoupling of the growth and energy generation processes. A lab-scale sequencing batch reactor was operated for the enrichment of a Nitrobacter culture. Fluorescent in situ hybridization (FISH) analysis showed that 73% of the bacterial population was Nitrobacter. Batch tests were carried out to assess the oxygen and nitrite consumption rates of the enriched culture at low and high nitrite levels, in the presence or absence of inorganic carbon. It was observed that in the absence of CO2, the Nitrobacter culture was able to oxidize nitrite at a rate that is 76% of that in the presence of CO2, with an oxygen consumption rate that is 85% of that measured in the presence of CO2. This enabled the impacts of nitrite/FNA on the catabolic and anabolic processes of Nitrobacter to be assessed separately. FNA rather than nitrite was likely the actual inhibitor to the Nitrobacter metabolism. It was revealed that FNA of up to 0.05 mg HNO2-N center dot L-1 (3.4 mu M), which was the highest FNA concentration used in this study, did not have any inhibitory effect on the catabolic processes of Nitrobacter. However, FNA initiated its inhibition to the anabolic processes of Nitrobacter at approximately 0.011 mg HNO2-N center dot L-1 (0.8 mu M), and completely stopped biomass synthesis at a concentration of approximately 0.023 mg HNO2-N center dot L-1 (1.6 mu M). The inhibitory effect could be described by an empirical inhibitory model proposed in this paper, but the underlying mechanisms remain to be revealed.
Resumo:
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to demonstrate at pilot scale a high level of energy recovery from sewage utilising a primary Anaerobic Migrating Bed Reactor (AMBR) operating at ambient temperature to convert COD to methane. The focus is the reduction in non-renewable CO2 emissions resulting from reduced energy requirements for sewage treatment. A pilot AMBR was operated on screened sewage over the period June 2003 to September 2004. The study was divided into two experimental phases. In Phase 1 the process operated at a feed rate of 10 L/h (HRT 50 h), SRT 63 days, average temperature 28 degrees C and mixing time fraction 0.05. In Phase 2 the operating parameters were 20 L/h, 26 days, 16 degrees C and 0.025. Methane production was 66% of total sewage COD in Phase 1 and 23% in Phase 2. Gas mixing of the reactor provided micro-aeration which suppressed sulphide production. Intermittent gas mixing at a useful power input of 6 W/m(3) provided satisfactory process performance in both phases. Energy consumption for mixing was about 1.5% of the energy conversion to methane in both operating phases. Comparative analysis with previously published data confirmed that methane supersaturation resulted in significant losses of methane in the effluent of anaerobic treatment systems. No cases have been reported where methane was considered to be supersaturated in the effluent. We have shown that methane supersaturation is likely to be significant and that methane losses in the effluent are likely to have been greater than previously predicted. Dissolved methane concentrations were measured at up to 2.2 times the saturation concentration relative to the mixing gas composition. However, this study has also demonstrated that despite methane supersaturation occurring, microaeration can result in significantly lower losses of methane in the effluent (< 11% in this study), and has demonstrated that anaerobic sewage treatment can genuinely provide energy recovery. The goal of demonstrating a high level of energy recovery in an ambient anaerobic bioreactor was achieved. An AMBR operating at ambient temperature can achieve up to 70% conversion of sewage COD to methane, depending on SRT and temperature. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Experimental studies were carried out on a bench-scale nitrogen removal system with a predenitrification configuration to gain insights into the spatial and temporal variations of DO, pH and ORP in such systems. It is demonstrated that these signals correlate strongly with the operational states of the system, and could therefore be used as system performance indicators. The DO concentration in the first aerobic zone, when receiving constant aeration, and the net pH change between the last and first aerobic zones display strong correlations with the influent ammonia concentration for the domestic wastewater used in this study. The pH profile along the aerobic zones gives good indication on the extent of nitrification. The experimental results also showed a good correlation between ORP values in the last aerobic zone and effluent ammonia and nitrate concentrations, provided that DO in this zone is controlled at a constant level. These results suggest that the DO, pH and ORP sensors could potentially be used as alternatives to the on-line nutrient sensors for the control of continuous systems. An idea of using a fuzzy inference system to make an integrated use of these signals for on-line aeration control is presented and demonstrated on the bench-scale system with promising results. The use of these sensors has to date only been demonstrated in intermittent systems, such as sequencing batch reactor systems.
Resumo:
Anaerobic digestion of lignocellulosic material is carried out effectively in many natural microbial ecosystems including the rumen. A rumen-enhanced anaerobic sequencing batch reactor was used to investigate cellulose degradation to give analysis of overall process stoichiometry and rates of hydrolysis. The reactor achieved VFA production rates of 207-236 mg COD/L/h at a loading rate of 10 g/L/d. Overloading of the reactor resulted in elevated production of propionic acid, and on occasion, the presence of succinic acid. With improvements in mixing and solids wasting, the anaerobic sequencing batch reactor system could enable full-scale application of the process for treatment of cellulosic waste material.
Resumo:
This paper evaluate the performance of a Wastewater Treatment Plant (WWTP) in sequential batch activated sludge modality with tertiary treatment step, located in high temperature region. It also presents the analysis of organic matter’s removal and the evaluation of sludge sedimentation conditions through reactors in bench scale, fed with different substrate’s and biomass’ concentrations, from the WWTP in study. The results showed high efficiency and stability of the treatment process using Sequential Batch Reactors for domestic sewage, even with sudden changes of organic and hydraulic load, reaching more than 90% of efficiency in the removal of biodegradable organic matter. The removal of organic matter and sedimentation tests in bench reactors showed the good performance in respect of the organic matter’s removal, however, the high concentration of micro-organism results in a lower sludge sedimentation rate, which can compromise the quality of the final effluent. The relation Food/Microorganism in the conditions of the WWTP’s current operation showed a value of 0.06 gCOD/gVSS.d. and zonal sedimentation velocity of 0.59 m/h, the great ratio of the concentration of the substrate by biomass concentration, which obtained the maximum operational efficiency, showed a value of 0.09 gCOD/gVSS.d. and zonal sedimentation velocity of 1.4 m/h.
Resumo:
This paper evaluate the performance of a Wastewater Treatment Plant (WWTP) in sequential batch activated sludge modality with tertiary treatment step, located in high temperature region. It also presents the analysis of organic matter’s removal and the evaluation of sludge sedimentation conditions through reactors in bench scale, fed with different substrate’s and biomass’ concentrations, from the WWTP in study. The results showed high efficiency and stability of the treatment process using Sequential Batch Reactors for domestic sewage, even with sudden changes of organic and hydraulic load, reaching more than 90% of efficiency in the removal of biodegradable organic matter. The removal of organic matter and sedimentation tests in bench reactors showed the good performance in respect of the organic matter’s removal, however, the high concentration of micro-organism results in a lower sludge sedimentation rate, which can compromise the quality of the final effluent. The relation Food/Microorganism in the conditions of the WWTP’s current operation showed a value of 0.06 gCOD/gVSS.d. and zonal sedimentation velocity of 0.59 m/h, the great ratio of the concentration of the substrate by biomass concentration, which obtained the maximum operational efficiency, showed a value of 0.09 gCOD/gVSS.d. and zonal sedimentation velocity of 1.4 m/h.
Resumo:
The biorefinery concept has attracted much attention over the last decade due to increasing concerns about the use of fossil resources. In this context emerged the use of bioplastics, namely polyhydroxyalkanoates (PHA). PHA are biocompatible and biodegradable plastics that can be obtained from renewable raw materials and can constitute an alternative solution to conventional plastics. In this work, hydrolysed cellulose pulp, coming from Eucalyptus globulus wood cooking, was used as substrate to the PHA-storing bacteria Haloferax mediterranei. The hydrolysed pulp is rich in simple sugars, mainly glucose (81.96 g.L-1) and xylose (20.90 g.L-1). Tests were made in defined medium with glucose and xylose and in hydrolysate supplemented with salts and yeast extract. Different concentrations of glucose were tested, namely 10, 15, 20, 30 and 40 g.L-1. The best accumulation results (27.1 % of PHA) were obtained in hydrolysate medium with 10 g.L-1. Using this concentration, assays were performed in fed-batch and sequencing batch reactor conditions in order to determine the best feeding strategy. The strategy that led to the best results was fed-batch assay with 24.7 % of PHA. An assay without sterile conditions was performed, in which was obtained the same growth than in sterilization test. Finally it was performed an assay in a bioreactor and a fast growth (0.14 h-1) with high glucose and xylose consumption rates (0.368 g.L-1.h-1 and 0.0947 g.L-1.h-1, respectively) were obtained. However 1.50 g.L-1 of PHA, corresponding to 16.1 % (92.52 % of 3HB and 3HV of 7.48 %) of % PHA were observed. The polymer was further characterized by DSC with a glass transition temperature of -6.07 °C, a melting temperature of 156.3 °C and a melting enthalpy of 63.07 J.g-1, values that are in accordance with the literature. This work recognizes for the first time the suitability of the pulp paper hydrolysate as a substrate for PHA production by H. mediterranei.
Resumo:
In this study it was evaluated the efficiency of the treatment of wet-processed coffee wastewater in upflow anaerobic sludge blanket (UASB) reactors in two stages, in bench scale, followed by post-treatment with activated sludge in batch. The first UASB reactor was submitted to an hydraulic retention time (HRT) of 6.2 d and organic loading rates (OLR) of 2.3 and 4.5g CODtotal (L d)-1, and the second UASB reactor to HRT of 3.1 d with OLR of 0.4 and 1.4g CODtotal (L d)-1. The average values of the affluent CODtotal increased from 13,891 to 27,926mg L-1 and the average efficiencies of removal of the CODtotal decreased from 95 to 91%, respectively, in the UASB reactors in two stages. The volumetric methane production increased from 0.274 to 0.323L CH4 (L reactor d)-1 with increment in the OLR. The average concentrations of total phenols in the affluent were of 48 and 163mg L-1, and the removal efficiencies in the UASB reactors in two stages of 92 and 90%, respectively, and increased to 97% with post-treatment. The average values of the removal efficiencies of total nitrogen and phosphorus were of 57 to 80% and 44 to 60%, respectively, in the UASB reactors in two stages and increased to 91 and 84% with the post-treatment.
Resumo:
Wording of problem 2 (week 3, 17/10/11).
Resumo:
Chemical Reaction Engineering. Course 2011-12. Solution of problem 2: constant pressure adiabatic stirred batch reactor with variable heat capacities.