989 resultados para sepsis, cardiomyopathy, venoarterial pCO2 difference, myocardial dysfunction.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. The host response to sepsis involves an inflammatory response, whereby the pathogen is initially sensed by innate immune receptors (pattern recognition receptors [PRRs]). When it persists, this immune response leads to secretion of proinflammatory products that induce organ dysfunction such as renal failure and consequently increased mortality. Moreover, the injured tissue releases molecules resulting from extracellular matrix degradation or dying cells that function as alarmines, which are recognized by PRR in the absence of pathogens in a second wave of injury. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are the best characterized PRRs. They are expressed in many cell types and throughout the nephron. Their activation leads to translocation of nuclear factors and synthesis of proinflammatory cytokines and chemokines. TLRs` signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1 beta and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2), phospholamban (PLB), and ryanodine channel (RYR2) mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats) or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 +/- 0.48 vs food-restricted group = 4.84 +/- 0.33, P < 0.01). The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 +/- 0.44 vs food-restricted group = 7.96 +/- 0.45, and control = 1.52 +/- 0.06 vs food-restricted group = 1.53 +/- 0.10, respectively). Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The aim of this study was to analyze stable hypertrophied myocardial function and its response to inotropic maneuvers in rats submitted to renovascular hypertension for a 10-week period (RHT group, n=10). Material/Methods: Myocardial performance was studied in isolated left ventricle papillary muscles in isometric contraction under the following conditions: at postrest contraction of 30 seconds (PRC), at extracellular calcium (ECa 2+) chloride concentration of 1.25 and 5.20 mM, and after beta-adrenergic stimulation with 10 -6 M isoproterenol (ISOP). Results: The results were compared with normotensive Wistar controls rats (C group, n=10). In basal condition, resting tension, and contraction time (TPT) were greater, while relaxation time (RT 50) tended to be longer in RHT than C group. PRC and ISOP promoted a similar change in muscle function response intensity (Δ) in both groups. ECa 2+ shift did not change TPT in the C group and decreased TPT in the RHT animals; Δ was different between these groups. RT 50 increased in C and decreased in RHT, both without statistical significance; however, Δ was different. Conclusions: These results suggest that hypertrophied myocardial dysfunction may be attibuted to changes in intracellular calcium cycling. © Med Sci Monit, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background: Several mechanisms have been proposed to contribute to cardiac dysfunction in obesity models, such as alterations in calcium (Ca2+) handling proteins and β-adrenergic receptors. Nevertheless, the role of these factors in the development of myocardial dysfunction induced by obesity is still not clear. Objective: The purpose of this study was to investigate whether obesity induced by hypercaloric diets results in cardiac dysfunction. Furthermore, it was evaluated whether this functional abnormality in obese rats is related to abnormal Ca2+ handling and the β-adrenoceptor system. Methods: Male 30-day-old Wistar rats were fed with standard food (C) and a cycle of five hypercaloric diets (Ob) for 15 weeks. Obesity was defined as increases in body fat percentage in rats. Cardiac function was evaluated by isolated analysis of the left ventricle papillary muscle under basal conditions and after inotropic and lusitropic maneuvers. Results: Compared with the control group, the obese rats had increased body fat and glucose intolerance. The muscles of obese rats developed similar baseline data, but the myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca2+ were compromised. There were no changes in cardiac function between groups after β-adrenergic stimulation. Conclusion: Obesity promotes cardiac dysfunction related to changes in intracellular Ca2+ handling. This functional damage is probably caused by reduced cardiac sarcoplasmic reticulum Ca2+ ATPase (SERCA2) activation via Ca2+ calmodulin kinase. (Arq Bras Cardiol 2011; 97(3) : 232-240).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Cardiopulmonary bypass is associated with ischemia-reperfusion injury to multiple organs. We aimed to evaluate whether remote ischemic preconditioning performed the day before surgery for congenital heart disease with cardiopulmonary bypass attenuates the postoperative inflammatory response and myocardial dysfunction. Methods: This was a prospective, randomized, single-blind, controlled trial. Children allocated to remote ischemic preconditioning underwent 4 periods of 5 minutes of lower limb ischemia by a blood pressure cuff intercalated with 5 minutes of reperfusion. Blood samples were collected 4, 12, 24, and 48 hours after cardiopulmonary bypass to evaluate nuclear factor kappa B activation in leukocytes by quantification of mRNA of I kappa B alpha by real-time quantitative polymerase chain reaction and for interleukin-8 and 10 plasma concentration measurements by enzyme-linked immunosorbent assay. Myocardial dysfunction was assessed by N-terminal pro-B-type natriuretic peptide and cardiac troponin I plasma concentrations, measured by chemiluminescence, and clinical parameters of low cardiac output syndrome. Results: Twelve children were allocated to remote ischemic preconditioning, and 10 children were allocated to the control group. Demographic data and Risk Adjustment for Congenital Heart Surgery 1 classification were comparable in both groups. Remote ischemic preconditioning group had lower postoperative values of N-terminal pro-B-type natriuretic peptide, but cardiac troponin I levels were not significantly different between groups. Interleukin-8 and 10 concentrations and I kappa B alpha gene expression were similar in both groups. Postoperative morbidity was similar in both groups; there were no postoperative deaths in either group. Conclusions: Late remote ischemic preconditioning did not provide clinically relevant cardioprotection to children undergoing cardiopulmonary bypass. (J Thorac Cardiovasc Surg 2012;144:178-83)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le cardiomiopatie che insorgono a seguito di infarto miocardico sono causa di elevata morbilità e mortalità dalle importanti ricadute cliniche, dovute alle patologie insorgenti a seguito dell’ischemia e della cicatrice post-infatuale. Il ventricolo sinistro danneggiato va incontro a un rimodellamento progressivo, con perdita di cardiomiociti e proliferazione dei fibroblasti, risultante in un’architettura e in una funzionalità dell’organo distorta. I fibroblasti cardiaci sono i principali responsabili della fibrosi, il processo di cicatrizzazione caratterizzato da un’eccessiva deposizione di matrice extracellulare (ECM). Negli ultimi anni gli sforzi del nostro laboratorio sono stati volti a cercare di risolvere questo problema, attraverso l’uso di una molecola da noi sintetizzata, un estere misto degli acidi butirrico, retinoico e ialuronico, HBR, capace di commissionare le cellule staminali in senso cardio-vascolare. Studi in vivo mostrano come l’iniezione diretta di HBR in cuori di animali sottoposti a infarto sperimentale, sia in grado, tra le atre cose, di diminuire la fibrosi cardiaca. Sulla base di questa evidenza abbiamo cercato di capire come e se HBR agisse direttamente sui fibroblasti, indagando i meccanismi coinvolti nella riduzione della fibrosi in vivo.. In questa tesi abbiamo dimostrato come HBR abbia un’azione diretta su fibroblasti, inibendone la proliferazione, senza effetti citotossici. Inoltre HBR induce una significativa riduzione della deposizione di collagene.. HBR agisce sull’espressione genica e sulla sintesi proteica, sopprimendo la trascrizione dei geni del collagene, così come dell’a-sma, inibendo la trasizione fibroblasti-miofibroblasti, e promuovendo la vasculogenesi (attraverso VEGF), la chemoattrazione di cellule staminali (attraverso SDF) e un’attività antifibrotica (inibendo CTGF). HBR sembra modulare l’espressione genica agendo direttamente sulle HDAC, probabilmente grazie alla subunità BU. L’abilità di HBR di ridurre la fibrosi post-infartuale, come dimostrato dai nostri studi in vivo ed in vitro, apre la strada a importanti prospettive terapeutiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial dysfunction and arrhythmias may be induced by congenital heart defects, but also be the result of heart surgery with cardiopulmonary bypass (CPB), potentially caused by differential expression of connexin40 (Cx40) and connexin43 (Cx43). In 16 pediatric patients undergoing corrective heart surgery, connexin mRNA expression was studied in volume overloaded (VO group, n=8) and not overloaded (NO group, n=8) right atrial myocardium, excised before and after CPB. Additionally, in eight of these patients ventricular specimens were investigated. The atrial Cx43 expression decreased during CPB, which was restricted to the VO group (p=0.008). In contrast, atrial Cx40 mRNA did not change during CPB. In ventricular myocardium compared to atrial mRNA levels, Cx40 was lower (p=0.006) and Cx43 higher (p=0.017) expressed, without significant change during CPB. This study revealed a significant influence of CPB and the underlying heart defect on Cx43 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On release from cardiac mast cells, alpha-chymase converts angiotensin I (Ang I) to Ang II. In addition to Ang II formation, alpha-chymase is capable of activating TGF-beta 1 and IL-1 beta, forming endothelins consisting of 31 amino acids, degrading endothelin-1, altering lipid metabolism, and degrading the extracellular matrix. Under physiological conditions the role of chymase in the mast cells of the heart is uncertain. In pathological situations, chymase may be secreted and have important effects on the heart. Thus, in animal models of cardiomyopathy, pressure overload, and myocardial infarction, there are increases in both chymase mRNA levels and chymase activity in the heart. In human diseased heart homogenates, alterations in chymase activity have also been reported. These findings have raised the possibility that inhibition of chymase may have a role in the therapy of cardiac disease. The selective chymase inhibitors developed to date include TY-51076, SUN-C8257, BCEAB, NK320, and TEI-E548. These have yet to be tested in humans, but promising results have been obtained in animal models of myocardial infarction, cardiomyopathy, and tachycardia-induced heart failure. It seems likely that orally active inhibitors of chymase could have a place in the treatment of cardiac diseases where injury-induced mast cell degranulation contributes to the pathology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Structural myocardial abnormalities have been extensively documented in hypothyroidism. Experimental studies in animal models have also shown involvement of thyroid hormones in gene expression of myocardial collagen. This study was planned to investigate the ability of ultrasonic tissue characterization, as evaluated by integrated backscatter (IBS), to early identify myocardial involvement in thyroid dysfunction. Patients and Methods: We studied 15 patients with hyperthyroidism (HYPER), 8 patients with hypothyroidism (HYPO), 14 patients with subclinical hypothyroidism (SCH) and 19 normal (N) subjects, who had normal LV systolic function. After treatment, 10 HYPER, 6 HYPO, and 8 SCH patients were reevaluated. IBS images were obtained and analyzed in parasternal short axis (papillary muscle level) view, at left ventricular (LV) posterior wall. The following IBS variables were analyzed: 1) the corrected coefficient (CC) of IBS, obtained by dividing IBS intensity by IBS intensity measured in a rubber phantom, using the same equipment adjustments, at the same depth; 2) cardiac cyclic variation (CV) of IBS - peak-to-peak difference between maximal and minimal values of IBS during cardiac cycle; 3) cardiac cyclic variation index (CVI) of IBS - percentual relationship between the cyclic variation (CV) and the mean value of IBS intensity. Results: CC of IBS was significantly larger (p < 0.05) in HYPER (1.57 +/- 0.6) and HYPO (1.53 +/- 0.3) as compared to SCH (1.32 +/- 0.3) or N (1.15 +/- 0.27). The CV (dB) (HYPO: 7.5 +/- 2.4; SCH: 8.2 +/- 3.1; HYPER: 8.2 +/- 2.0) and the CVI (HYPO: 35.6 +/- 19.7%; SCH: 34.7 +/- 17.5%; HYPER: 37.8 +/- 11.6%) were not significantly different in patients with thyroid dysfunction as compared to N (7.0 +/- 2.0 and 44.5 +/- 15.1%). Conclusions: CC of IBS was able to differentiate cardiac involvement in patients with overt HYPO and HYPER who had normal LV systolic function. These early myocardial structural abnormalities were partially reversed by drug therapy in HYPER group. On the other hand, although mean IBS intensity tended to be slightly larger in patients with SCH as compared to N, this difference was not statistical significant.