964 resultados para semiconductor III-V material
Resumo:
In this contribution, angle-resolved X-ray photoelectron spectroscopy is used to explore the extension and nature of a GaAs/GaInP heterointerface. This bilayer structure constitutes a very common interface in a multilayered III-V solar cell. Our results show a wide indium penetration into the GaAs layer, while phosphorous diffusion is much less important. The physico-chemical nature of such interface and its depth could deleteriously impact the solar cell performance. Our results probe the formation of spurious phases which may profoundly affect the interface behavior.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.
Resumo:
A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three experiments at three different temperatures are necessary in order to obtain the acceleration factor which relates the time at the stress level with the time at nominal working conditions. . However, up to now only the test at the highest temperature has finished. Therefore, we can not provide complete reliability information but we have analyzed the life data and the failure mode of the solar cells inside the climatic chamber at the highest temperature. The failures have been all of them catastrophic. In fact, the solar cells have turned into short circuits. We have fitted the failure distribution to a two parameters Weibull function. The failures are wear-out type. We have observed that the busbar and the surrounding fingers are completely deteriorate
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on silicon for photovoltaic applications. One of the first issues to be considered in the development of this structure will be the strategy to create the silicon emitter of the bottom subcell. In this study, we explore the possibility of forming the silicon emitter by phosphorus diffusion (i.e. exposing the wafer to PH3 in a MOVPE reactor) and still obtain good surface morphologies to achieve a successful III-V heteroepitaxy as occurs in conventional III-V on germanium solar cell technology. Consequently, we explore the parameter space (PH3 partial pressure, time and temperature) that is needed to create optimized emitter designs and assess the impact of such treatments on surface morphology using atomic force microscopy. Although a strong degradation of surface morphology caused by prolonged exposure of silicon to PH3 is corroborated, it is also shown that subsequent anneals under H-2 can recover silicon surface morphology and minimize its RMS roughness and the presence of pits and spikes.
Resumo:
In high quality solar cells, the internal luminescence can be harnessed to enhance the overall performance. Internal confinement of the photons can lead to an increased open-circuit voltage and short-circuit current. Alternatively, in multijunction solar cells the photons can be coupled from a higher bandgap junction to a lower bandgap junction for enhanced performance. We model the solar cell as an optical cavity and compare calculated performance characteristics with measurements. We also describe how very high luminescent coupling alleviates the need for top-cell thinning to achieve current-matching.
Resumo:
Vicinal Ge(100) is the common substrate for state of the art multi-junction solar cells grown by metal-organic vapor phase epitaxy (MOVPE). While triple junction solar cells based on Ge(100) present efficiencies mayor que 40%, little is known about the microscopic III-V/Ge(100) nucleation and its interface formation. A suitable Ge(100) surface preparation prior to heteroepitaxy is crucial to achieve low defect densities in the III-V epilayers. Formation of single domain surfaces with double layer steps is required to avoid anti-phase domains in the III-V films. The step formation processes in MOVPE environment strongly depends on the major process parameters such as substrate temperature, H2 partial pressure, group V precursors [1], and reactor conditions. Detailed investigation of these processes on the Ge(100) surface by ultrahigh vacuum (UHV) based standard surface science tools are complicated due to the presence of H2 process gas. However, in situ surface characterization by reflection anisotropy spectroscopy (RAS) allowed us to study the MOVPE preparation of Ge(100) surfaces directly in dependence on the relevant process parameters [2, 3, 4]. A contamination free MOVPE to UHV transfer system [5] enabled correlation of the RA spectra to results from UHV-based surface science tools. In this paper, we established the characteristic RA spectra of vicinal Ge(100) surfaces terminated with monohydrides, arsenic and phosphorous. RAS enabled in situ control of oxide removal, H2 interaction and domain formation during MOVPE preparation.
Resumo:
Inscripción en la parte inferior: "Vista de la ciudad de Valencia, tomada desde Sn. Pío V"
Resumo:
Progressing beyond 3-junction inverted-metamorphic multijunction solar cells grown on GaAs substrates, to 4-junction devices, requires the development of high quality metamorphic 0.7 eV GaInAs solar cells. Once accomplished, the integration of this subcell into a full, Monolithic, series connected, 4J-IMM structure demands the development of a metamorphic tunnel junction lattice matched to the 1eV GaInAs subcell. Moreover, the 0.7 eV junction adds about 2 hours of growth time to the structure, implying a heavier annealing of the subcells and tunnel junctions grown first. The final 4J structure is above 20 Pm thick, with about half of this thickness used by the metamorphic buffers required to change the lattice constant throughout the structure. Thinning of these buffers would help reduce the total thickness of the 4J structure to decrease its growth cost and the annealing time. These three topics: development of a metamorphic tunnel junction for the 4th junction, analysis of the annealing, and thinning of the structure, are tackled in this work. The results presented show the successful implementation of an antimonide-based tunnel junction for the 4th junction and of pathways to mitigate the impact of annealing and reduce the thickness of the metamorphic buffers.
Resumo:
Nonradiative recombination in inverted GaInP junctions is dramatically reduced using a rear-heterojunction design rather than the more traditional thin-emitter homojunction design. When this GaInP junction design is included in inverted multijunction solar cells, the high radiative efficiency translates into both higher subcell voltage and high luminescence coupling to underlying subcells, both of which contribute to improved performance. Subcell voltages within two and four junction devices are measured by electroluminescence and the internal radiative efficiency is quantified as a function of recombination current using optical modeling. The performance of these concentrator multijunction devices is compared with the Shockley–Queisser detailed-balance radiative limit, as well as an internal radiative limit, which considers the effects of the actual optical environment in which a perfect junction may exist.
Resumo:
A density-functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density-functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie temperature by additional confinement of the holes in a δ-doped layer of Mn by a quantum well.
Resumo:
v.1-2
Resumo:
v.3
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.