886 resultados para semi-autonomous information retrieval
Resumo:
Multimedia, retrieval, multimedia-retrieval-system, multimedia query languages, weighting, preferences
Resumo:
Aquest projecte permetrà aprofundir en el coneixement de l'estructura de funcionament del PL/SQL d'Oracle (crides a procediments i, especialment, tractament d'excepcions), en la utilització de JDBC com a mecanisme de comunicació entre JAVA i Oracle, i en l'ús de les classes de generació d'interfícies gràfiques d'usuari (swing) i, a més, permetrà posar en pràctica funcionalitats d'Oracle que no havia tingut oportunitat d'emprar, com ara tipus genèrics de dades, objectes persistents o transaccions autònomes.
Resumo:
En el curso y ejecución de este trabajo, ahondaré en el concepto de web semántica, unarealidad cada vez más tangible, que bajo el acrónimo de web 3.0 supondrá el relevo del actual modelo web.Al tratarse de un campo de aplicación muy extenso, centraremos la temática en el diseño y populación semiautomática de ontologías, siendo estas ultimas una pieza clave en el desarrollo y el éxito potencial de las tecnologías semánticas.
Resumo:
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.
Resumo:
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante.
Resumo:
Le présent mémoire cherche à comprendre et à cerner le lien entre la stratégie de recherche d’information par le journaliste sur le web et les exigences de sa profession. Il vise à appréhender les précautions que prend le journaliste lors de sa recherche d’information sur le web en rapport avec les contraintes que lui imposent les règles de sa profession pour assurer la qualité des sources d’informations qu’il exploite. Nous avons examiné cette problématique en choisissant comme cadre d’étude Radio-Canada où nous avons rencontré quelques journalistes. Ceux-ci ont été suivis en situation de recherche d’information puis questionnés sur leurs expériences de recherche. L’arrivée d’internet et la révolution technologique qui en a découlé ont profondément bouleversé les pratiques journalistiques. La recherche d’information représente ainsi une zone importante de cette mutation des pratiques. Cette transformation amène surtout à s’interroger sur la façon dont la nouvelle façon de rechercher les sources d’information influence le travail du journaliste, et surtout les balises que se donne celui-ci pour résister aux pièges découlant de sa nouvelle méthode de travail.
Resumo:
Sharing of information with those in need of it has always been an idealistic goal of networked environments. With the proliferation of computer networks, information is so widely distributed among systems, that it is imperative to have well-organized schemes for retrieval and also discovery. This thesis attempts to investigate the problems associated with such schemes and suggests a software architecture, which is aimed towards achieving a meaningful discovery. Usage of information elements as a modelling base for efficient information discovery in distributed systems is demonstrated with the aid of a novel conceptual entity called infotron.The investigations are focused on distributed systems and their associated problems. The study was directed towards identifying suitable software architecture and incorporating the same in an environment where information growth is phenomenal and a proper mechanism for carrying out information discovery becomes feasible. An empirical study undertaken with the aid of an election database of constituencies distributed geographically, provided the insights required. This is manifested in the Election Counting and Reporting Software (ECRS) System. ECRS system is a software system, which is essentially distributed in nature designed to prepare reports to district administrators about the election counting process and to generate other miscellaneous statutory reports.Most of the distributed systems of the nature of ECRS normally will possess a "fragile architecture" which would make them amenable to collapse, with the occurrence of minor faults. This is resolved with the help of the penta-tier architecture proposed, that contained five different technologies at different tiers of the architecture.The results of experiment conducted and its analysis show that such an architecture would help to maintain different components of the software intact in an impermeable manner from any internal or external faults. The architecture thus evolved needed a mechanism to support information processing and discovery. This necessitated the introduction of the noveI concept of infotrons. Further, when a computing machine has to perform any meaningful extraction of information, it is guided by what is termed an infotron dictionary.The other empirical study was to find out which of the two prominent markup languages namely HTML and XML, is best suited for the incorporation of infotrons. A comparative study of 200 documents in HTML and XML was undertaken. The result was in favor ofXML.The concept of infotron and that of infotron dictionary, which were developed, was applied to implement an Information Discovery System (IDS). IDS is essentially, a system, that starts with the infotron(s) supplied as clue(s), and results in brewing the information required to satisfy the need of the information discoverer by utilizing the documents available at its disposal (as information space). The various components of the system and their interaction follows the penta-tier architectural model and therefore can be considered fault-tolerant. IDS is generic in nature and therefore the characteristics and the specifications were drawn up accordingly. Many subsystems interacted with multiple infotron dictionaries that were maintained in the system.In order to demonstrate the working of the IDS and to discover the information without modification of a typical Library Information System (LIS), an Information Discovery in Library Information System (lDLIS) application was developed. IDLIS is essentially a wrapper for the LIS, which maintains all the databases of the library. The purpose was to demonstrate that the functionality of a legacy system could be enhanced with the augmentation of IDS leading to information discovery service. IDLIS demonstrates IDS in action. IDLIS proves that any legacy system could be augmented with IDS effectively to provide the additional functionality of information discovery service.Possible applications of IDS and scope for further research in the field are covered.
Resumo:
Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
Resumo:
The indexing automation has been discussed by researches in the area of Information Science however the discussions have not been so clear on the use of indexing software. Thus, it is necessary to know the indexing software, as well as its application in the analysis of documentary contents. To do so, it is proposed, here, to investigate both the consistency of indexing and the exhaustiveness and precision of the information retrieval, by means of comparative analysis between SISA (Sistema de Indizacion Semi-Automatico) automatic index and BIREME ( Centro Latino-Americano e do Caribe de Informação em Ciencias da Saude) manual indexing. The aim of this paper is to contribute to the theoretical development of the indexing automation and the improvement of SISA. Thus, SISA application and evaluation was used based on the calculation of the consistency indexes between the two types of indexing, and the calculation of the exhaustiveness and precision indexes in information retrieval, by means of searching into BDSISA and BIREME databases, composed by descriptors taken from SISA and manual indexing respectively. The differences among the terms used in scientific papers comparing to the DeCS ones were the main difficult factor to achieve higher consistency indexes in the indexing. These differences influenced the exhaustiveness and precision indexes in the information retrieval, showing that it is necessary to improve the documentary language used by SISA software and to incorporate linguistic methods.
Resumo:
In some applications with case-based system, the attributes available for indexing are better described as linguistic variables instead of receiving numerical treatment. In these applications, the concept of fuzzy hypercube can be applied to give a geometrical interpretation of similarities among cases. This paper presents an approach that uses geometrical properties of fuzzy hypercube space to make indexing and retrieval processes of cases.