837 resultados para semi binary based feature detectordescriptor
Resumo:
The concentrations of the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), were measured from September to November 2002 at a pasture site in the Amazon Basin (Rondnia, Brazil) (LBA-SMOCC). Measurements were conducted using a semi-continuous technique (Wet-annular denuder/Steam-Jet Aerosol Collector: WAD/SJAC) and three integrating filter-based methods, namely (1) a denuder-filter pack (DFP: Teflon and impregnated Whatman filters), (2) a stacked-filter unit (SFU: polycarbonate filters), and (3) a High Volume dichotomous sampler (HiVol: quartz fiber filters). Measurements covered the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). Analyses of the particles collected on filters were performed using ion chromatography (IC) and Particle-Induced X-ray Emission spectrometry (PIXE). Season-dependent discrepancies were observed between the WAD/SJAC system and the filter-based samplers. During the dry season, when PM2.5 (D-p <= 2.5 mu m) concentrations were similar to 100 mu g m(-3), aerosol NH4+ and SO42- measured by the filter-based samplers were on average two times higher than those determined by the WAD/SJAC. Concentrations of aerosol NO3- and Cl- measured with the HiVol during daytime, and with the DFP during day- and nighttime also exceeded those of the WAD/SJAC by a factor of two. In contrast, aerosol NO3- and Cl- measured with the SFU during the dry season were nearly two times lower than those measured by the WAD/SJAC. These differences declined markedly during the transition period and towards the cleaner conditions during the onset of the wet season (PM2.5 similar to 5 mu g m(-3)); when filter-based samplers measured on average 40-90% less than the WAD/SJAC. The differences were not due to consistent systematic biases of the analytical techniques, but were apparently a result of prevailing environmental conditions and different sampling procedures. For the transition period and wet season, the significance of our results is reduced by a low number of data points. We argue that the observed differences are mainly attributable to (a) positive and negative filter sampling artifacts, (b) presence of organic compounds and organosulfates on filter substrates, and (c) a SJAC sampling efficiency of less than 100%.
Resumo:
The design of translation invariant and locally defined binary image operators over large windows is made difficult by decreased statistical precision and increased training time. We present a complete framework for the application of stacked design, a recently proposed technique to create two-stage operators that circumvents that difficulty. We propose a novel algorithm, based on Information Theory, to find groups of pixels that should be used together to predict the Output Value. We employ this algorithm to automate the process of creating a set of first-level operators that are later combined in a global operator. We also propose a principled way to guide this combination, by using feature selection and model comparison. Experimental results Show that the proposed framework leads to better results than single stage design. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Most face recognition approaches require a prior training where a given distribution of faces is assumed to further predict the identity of test faces. Such an approach may experience difficulty in identifying faces belonging to distributions different from the one provided during the training. A face recognition technique that performs well regardless of training is, therefore, interesting to consider as a basis of more sophisticated methods. In this work, the Census Transform is applied to describe the faces. Based on a scanning window which extracts local histograms of Census Features, we present a method that directly matches face samples. With this simple technique, 97.2% of the faces in the FERET fa/fb test were correctly recognized. Despite being an easy test set, we have found no other approaches in literature regarding straight comparisons of faces with such a performance. Also, a window for further improvement is presented. Among other techniques, we demonstrate how the use of SVMs over the Census Histogram representation can increase the recognition performance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ti and its alloys are widely used as biomaterials. Their main properties are excellent corrosion resistance, relatively low elastic modulus, high specific strength, and good biocompatibility. The development of new Ti alloys with properties favorable for use in the human body is desired. To this end, Ti alloys with Mo, Nb, Zr, and Ta are being developed, because these elements do not cause cytotoxicity. The presence of interstitial elements (such as oxygen and nitrogen) induces strong changes in the elastic properties of the material, which leads to hardening or softening of the alloy. By means of anelastic spectroscopy, we are able to obtain information on the diffusion of these interstitial elements present in the crystalline lattice. In this paper, the effect of oxygen on the anelastic properties of some binary Ti-based alloys was analyzed with anelastic spectroscopy. The diffusion coefficients, pre-exponential factors, and activation energies were calculated for oxygen and nitrogen in these alloys.
Resumo:
Dimensionality reduction is employed for visual data analysis as a way to obtaining reduced spaces for high dimensional data or to mapping data directly into 2D or 3D spaces. Although techniques have evolved to improve data segregation on reduced or visual spaces, they have limited capabilities for adjusting the results according to user's knowledge. In this paper, we propose a novel approach to handling both dimensionality reduction and visualization of high dimensional data, taking into account user's input. It employs Partial Least Squares (PLS), a statistical tool to perform retrieval of latent spaces focusing on the discriminability of the data. The method employs a training set for building a highly precise model that can then be applied to a much larger data set very effectively. The reduced data set can be exhibited using various existing visualization techniques. The training data is important to code user's knowledge into the loop. However, this work also devises a strategy for calculating PLS reduced spaces when no training data is available. The approach produces increasingly precise visual mappings as the user feeds back his or her knowledge and is capable of working with small and unbalanced training sets.
Resumo:
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Resumo:
Abstract Background Atherosclerosis causes millions of deaths, annually yielding billions in expenses round the world. Intravascular Optical Coherence Tomography (IVOCT) is a medical imaging modality, which displays high resolution images of coronary cross-section. Nonetheless, quantitative information can only be obtained with segmentation; consequently, more adequate diagnostics, therapies and interventions can be provided. Since it is a relatively new modality, many different segmentation methods, available in the literature for other modalities, could be successfully applied to IVOCT images, improving accuracies and uses. Method An automatic lumen segmentation approach, based on Wavelet Transform and Mathematical Morphology, is presented. The methodology is divided into three main parts. First, the preprocessing stage attenuates and enhances undesirable and important information, respectively. Second, in the feature extraction block, wavelet is associated with an adapted version of Otsu threshold; hence, tissue information is discriminated and binarized. Finally, binary morphological reconstruction improves the binary information and constructs the binary lumen object. Results The evaluation was carried out by segmenting 290 challenging images from human and pig coronaries, and rabbit iliac arteries; the outcomes were compared with the gold standards made by experts. The resultant accuracy was obtained: True Positive (%) = 99.29 ± 2.96, False Positive (%) = 3.69 ± 2.88, False Negative (%) = 0.71 ± 2.96, Max False Positive Distance (mm) = 0.1 ± 0.07, Max False Negative Distance (mm) = 0.06 ± 0.1. Conclusions In conclusion, by segmenting a number of IVOCT images with various features, the proposed technique showed to be robust and more accurate than published studies; in addition, the method is completely automatic, providing a new tool for IVOCT segmentation.
Resumo:
Binary stars are frequent in the universe, with about 50% of the known main sequence stars being located at a multiple star system (Abt, 1979). Even though, they are universally thought as second rate sites for the location of exo-planets and the habitable zone, due to the difficulties of detection and high perturbation that could prevent planet formation and long term stability. In this work we show that planets in binary star systems can have regular orbits and remain on the habitable zone. We introduce a stability criterium based on the solution of the restricted three body problem and apply it to describe the short period planar and three-dimentional stability zones of S-type orbits around each star of the Alpha Centauri system. We develop as well a semi-analytical secular model to study the long term dynamics of fictional planets in the habitable zone of those stars and we verify that planets on the habitable zone would be in regular orbits with any eccentricity and with inclination to the binary orbital plane up until 35 degrees. We show as well that the short period oscillations on the semi-major axis is 100 times greater than the Earth's, but at all the time the planet would still be found inside the Habitable zone.
Resumo:
Semi-supervised learning is a classification paradigm in which just a few labeled instances are available for the training process. To overcome this small amount of initial label information, the information provided by the unlabeled instances is also considered. In this paper, we propose a nature-inspired semi-supervised learning technique based on attraction forces. Instances are represented as points in a k-dimensional space, and the movement of data points is modeled as a dynamical system. As the system runs, data items with the same label cooperate with each other, and data items with different labels compete among them to attract unlabeled points by applying a specific force function. In this way, all unlabeled data items can be classified when the system reaches its stable state. Stability analysis for the proposed dynamical system is performed and some heuristics are proposed for parameter setting. Simulation results show that the proposed technique achieves good classification results on artificial data sets and is comparable to well-known semi-supervised techniques using benchmark data sets.
Resumo:
[EN]This work presents the measurements made to define the temperature−composition curves for a set of binary systems composed of several pyridinium-based ionic liquids (ILs) [bpy][BF4] and [bYmpy][BF4] (Y = 2,3,4) with mono- and dihaloalkanes (Cl and Br) in the temperature interval [280−473] K and at atmospheric pressure. With the exception of the short chain dichloroalkanes (1,1- and 1,2-), all the compounds present some degree of immiscibility with the ionic liquids selected.