664 resultados para sedentary behviour
Resumo:
Objective: The evidence was reviewed on how physical activity could influence the regulation of food intake by either adjusting the sensitivity of appetite control mechanisms or by generating an energy deficit that could adjust the drive to eat. Design: Interventionist and correlational studies that had a significant influence on the relationship between physical activity and food intake were reviewed. Interventionist studies involve a deliberate imposition of physical activity with subsequent monitoring of the eating response. Correlational studies make use of naturally occurring differences in the levels of physical activity (between and within subjects) with simultaneous assessment of energy expenditure and intake. Subjects: Studies using lean, overweight, and obese men and women were included. Results: Only 19% of interventionist studies report an increase in energy intake after exercise; 65% show no change and 16% show a decrease in appetite. Of the correlational studies, approximately half show no relationship between energy expenditure and intake. These data indicate a rather loose coupling between energy expenditure and intake. A common sense view is that exercise is futile as a form of weight control because the energy deficit drives a compensatory increase in food intake. However, evidence shows that this is not generally true. One positive aspect of this is that raising energy expenditure through physical activity (or maintaining an active life style) can cause weight loss or prevent weight gain. A negative feature is that when people become sedentary after a period of high activity, food intake is not “down-regulated” to balance a reduced energy expenditure. Conclusion: Evidence suggests that a high level of physical activity can aid weight control either by improving the matching of food intake to energy expenditure (regulation) or by raising expenditure so that it is difficult for people to eat themselves into a positive energy balance.
Resumo:
Summary There are four interactions to consider between energy intake (EI) and energy expenditure (EE) in the development and treatment of obesity. (1) Does sedentariness alter levels of EI or subsequent EE? and (2) Do high levels of EI alter physical activity or exercise? (3) Do exercise-induced increases in EE drive EI upwards and undermine dietary approaches to weight management and (4) Do low levels of EI elevate or decrease EE? There is little evidence that sedentariness alters levels of EI. This lack of cross-talk between altered EE and EI appears to promote a positive EB. Lifestyle studies also suggest that a sedentary routine actually offers the opportunity for over-consumption. Substantive changes in non exercise activity thermogenesis are feasible, but not clearly demonstrated. Cross talk between elevated EE and EI is initially too weak and takes too long to activate, to seriously threaten dietary approaches to weight management. It appears that substantial fat loss is possible before intake begins to track a sustained elevation of EE. There is more evidence that low levels of EI does lower physical activity levels, in relatively lean men under conditions of acute or prolonged semi-starvation and in dieting obese subjects. During altered EB there are a number of small but significant changes in the components of EE, including (i) sleeping and basal metabolic rate, (ii) energy cost of weight change alters as weight is gained or lost, (iii) exercise efficiency, (iv) energy cost of weight bearing activities, (v) during substantive overfeeding diet composition (fat versus carbohydrate) will influence the energy cost of nutrient storage by ~ 15%. The responses (i-v) above are all “obligatory” responses. Altered EB can also stimulate facultative behavioural responses, as a consequence of cross-talk between EI and EE. Altered EB will lead to changes in the mode duration and intensity of physical activities. Feeding behaviour can also change. The degree of inter-individual variability in these responses will define the scope within which various mechanisms of EB compensation can operate. The relative importance of “obligatory” versus facultative, behavioural responses -as components of EB control- need to be defined.
Resumo:
Objective: To examine exercise-induced changes in the reward value of food during medium-term supervised exercise in obese individuals. ---------- Subjects/Methods: The study was a 12-week supervised exercise intervention prescribed to expend 500 kcal/day, 5 d/week. 34 sedentary obese males and females were identified as responders (R) or non-responders (NR) to the intervention according to changes in body composition relative to measured energy expended during exercise. Food reward (ratings of liking and wanting, and relative preference by forced choice pairs) for an array of food images was assessed before and after an acute exercise bout. ---------- Results. 20 responders and 14 non-responders were identified. R lost 5.2 kg±2.4 of total fat mass and NR lost 1.7 kg±1.4. After acute exercise, liking for all foods increased in NR compared to no change in R. Furthermore, NR showed an increase in wanting and relative preference for high-fat sweet foods. These differences were independent of 12-weeks regular exercise and weight loss. ---------- Conclusion. Individuals who showed an immediate post-exercise increase in liking and increased wanting and preference for high-fat sweet foods displayed a smaller reduction in fat mass with exercise. For some individuals, exercise increases the reward value of food and diminishes the impact of exercise on fat loss.
Resumo:
Background: While there is emerging evidence that sedentary behavior is negatively associated with health risk, research on the correlates of sitting time in adults is scarce. Methods: Self-report data from 7,724 women born between 1973-1978 and 8,198 women born between 1946-1951 were collected as part of the Australian Longitudinal Study on Women’s Health. Linear regression models were computed to examine whether demographic, family and caring duties, time use, health and health behavior variables were associated with weekday sitting time. Results: Mean sitting time (SD) was 6.60 (3.32) hours/day for the 1973-1978 cohort and 5.70 (3.04) hours/day for the 1946-1951 cohort. Indicators of socio-economic advantage, such as full11 time work and skilled occupations in both cohorts and university education in the mid-age cohort, were associated with high sitting time. A cluster of ‘healthy behaviours’ was associated with lower sitting time in the mid-aged women (moderate/high physical activity levels, non-smoking, non-drinking). For both cohorts, sitting time was highest in women in full-time work, in skilled occupations and in those who spent the most time in passive leisure. Conclusions: The results suggest that, in young and mid-aged women, interventions for reducing sitting time should focus on both occupational and leisure-time sitting.
Resumo:
Obesity is affecting an increasing proportion of children globally. Despite an appreciation that physical activity is essential for the normal growth and development of children and prevents obesity and obesity-related health problems, too few children are physically active. A concurrent problem is that today’s young people spend more time than previous generations did in sedentary pursuits, including watching television and engaging in screen-based games. Active behavior has been displaced by these inactive recreational choices, which has contributed to reductions in activity-related energy expenditure. Implementation of multifactorial solutions considered to offer the best chance of combating these trends is urgently required to redress the energy imbalance that characterizes obesity. The counterproductive ‘shame and blame’ mentality that apportions responsibility for the childhood obesity problem to sufferers, their parents, teachers or health-care providers needs to be changed. Instead, these groups should offer constant support and encouragement to promote appropriate physical activity in children. Failure to provide activity opportunities will increase the likelihood that the children of today will live less healthy (and possibly shorter)lives than their parents.
Resumo:
Background: The Current Population Survey (CPS) and the American Time Use Survey (ATUS) use the 2002 census occupation system to classify workers into 509 separate occupations arranged into 22 major occupational categories. Methods: We describe the methods and rationale for assigning detailed MET estimates to occupations and present population estimates (comparing outputs generated by analysis of previously published summary MET estimates to the detailed MET estimates) of intensities of occupational activity using the 2003 ATUS data comprised of 20,720 respondents, 5,323 (2,917 males and 2,406 females) of whom reported working 6+ hours at their primary occupation on their assigned reporting day. Results: Analysis using the summary MET estimates resulted in 4% more workers in sedentary occupations, 6% more in light, 7% less in moderate, and 3% less in vigorous compared to using the detailed MET estimates. The detailed estimates are more sensitive to identifying individuals who do any occupational activity that is moderate or vigorous in intensity resulting in fewer workers in sedentary and light intensity occupations. Conclusions: Since CPS/ATUS regularly captures occupation data it will be possible to track prevalence of the different intensity levels of occupations. Updates will be required with inevitable adjustments to future occupational classification systems.
Resumo:
Objective To describe the impact of a parent-led, family focused child weight management program on the food intake and activity patterns of pre-pubertal children. Methods n assessor-blinded, randomized controlled trial involving 111 (64% female) overweight, pre-pubertal children 6 to 9 years of age randomly assigned to parenting-skills training plus intensive lifestyle education, parenting-skills training alone, or a 12-month wait-listed control. Study outcomes were assessed at baseline, 6 months, and 12 months. This paper presents data on food intake assessed via a validated 54-item parent completed dietary questionnaire and activity behaviours assessed via a parent-report 20-item activity questionnaire. Results Intake of energy-dense nutrient poor foods was lower in both intervention groups at 6 months (mean difference, P+DA -1.5 serves [CI -2.0;-1.0]; P -1.0 serves [-2.0;-0.5]) and 12 months (mean difference P+DA -1.0 serves [CI -2.0;-0.5]; P -1.0 serves [-1.5; 0.0]) compared to baseline. Intake of vegetables, fruit, breads and cereals, meat and alternatives and dairy foods remained unchanged. Regardless of study group there were significant reductions over time in the reported time spent engaged in small screen activities and an increase in the time reported spent in active play. Conclusion Child weight management intervention that promotes food intake in line with national dietary guidelines achieves a reduction in children’s intake of energy dense, nutrient poor foods. This was achieved without compromising intake of nutrient-rich food and changes in were maintained even once the intervention ceased.
Resumo:
Background: In the last decade, there has been increasing interest in the health effects of sedentary behavior, which is often assessed using self-report sitting-time questions. The aim of this qualitative study was to document older adults’ understanding of sitting-time questions from the International Physical Activity (PA) Questionnaire (IPAQ) and the PA Scale for the Elderly (PASE). Methods: Australian community-dwelling adults aged 65+ years answered the IPAQ and PASE sitting questions in face-to-face semi-structured interviews. IPAQ uses one open-ended question to assess sitting on a weekday in the last 7 days 'at work, at home, while doing coursework and during leisure time'; PASE uses a three-part closed question about daily leisure-time sitting in the last 7 days. Participants expressed their thoughts out loud while answering each question. They were then probed about their responses. Interviews were recorded, transcribed and coded into themes. Results: Mean age of the 28 male and 27 female participants was 73 years (range 65-89). The most frequently reported activity was watching TV. For both questionnaires, many participants had difficulties understanding what activities to report. Some had difficulty understanding what activities should be classified as ‘leisure-time sitting’. Some assumed they were being asked to only report activities provided as examples. Most reported activities they normally do, rather than those performed on a day in the previous week. Participants used a variety of strategies to select ‘a day’ for which they reported their sitting activities and to calculate sitting time on that day. Therefore, many different ways of estimating sitting time were used. Participants had particular difficulty reporting their daily sitting-time when their schedules were not consistent across days. Some participants declared the IPAQ sitting question too difficult to answer. Conclusion: The accuracy of older adults’ self-reported sitting time is questionable given the challenges they have in answering sitting-time questions. Their responses to sitting-time questions may be more accurate if our recommendations for clarifying the sitting domains, providing examples relevant to older adults and suggesting strategies for formulating responses are incorporated. Future quantitative studies should include objective criterion measures to assess validity and reliability of these questions.
Resumo:
Understanding the relationship between diet, physical activity and health in humans requires accurate measurement of body composition and daily energy expenditure. Stable isotopes provide a means of measuring total body water and daily energy expenditure under free-living conditions. While the use of isotope ratio mass spectrometry (IRMS) for the analysis of 2H (Deuterium) and 18O (Oxygen-18) is well established in the field of human energy metabolism research, numerous questions remain regarding the factors which influence analytical and measurement error using this methodology. This thesis was comprised of four studies with the following emphases. The aim of Study 1 was to determine the analytical and measurement error of the IRMS with regard to sample handling under certain conditions. Study 2 involved the comparison of TEE (Total daily energy expenditure) using two commonly employed equations. Further, saliva and urine samples, collected at different times, were used to determine if clinically significant differences would occur. Study 3 was undertaken to determine the appropriate collection times for TBW estimates and derived body composition values. Finally, Study 4, a single case study to investigate if TEE measures are affected when the human condition changes due to altered exercise and water intake. The aim of Study 1 was to validate laboratory approaches to measure isotopic enrichment to ensure accurate (to international standards), precise (reproducibility of three replicate samples) and linear (isotope ratio was constant over the expected concentration range) results. This established the machine variability for the IRMS equipment in use at Queensland University for both TBW and TEE. Using either 0.4mL or 0.5mL sample volumes for both oxygen-18 and deuterium were statistically acceptable (p>0.05) and showed a within analytical variance of 5.8 Delta VSOW units for deuterium, 0.41 Delta VSOW units for oxygen-18. This variance was used as “within analytical noise” to determine sample deviations. It was also found that there was no influence of equilibration time on oxygen-18 or deuterium values when comparing the minimum (oxygen-18: 24hr; deuterium: 3 days) and maximum (oxygen-18: and deuterium: 14 days) equilibration times. With regard to preparation using the vacuum line, any order of preparation is suitable as the TEE values fall within 8% of each other regardless of preparation order. An 8% variation is acceptable for the TEE values due to biological and technical errors (Schoeller, 1988). However, for the automated line, deuterium must be assessed first followed by oxygen-18 as the automated machine line does not evacuate tubes but merely refills them with an injection of gas for a predetermined time. Any fractionation (which may occur for both isotopes), would cause a slight elevation in the values and hence a lower TEE. The purpose of the second and third study was to investigate the use of IRMS to measure the TEE and TBW of and to validate the current IRMS practices in use with regard to sample collection times of urine and saliva, the use of two TEE equations from different research centers and the body composition values derived from these TEE and TBW values. Following the collection of a fasting baseline urine and saliva sample, 10 people (8 women, 2 men) were dosed with a doubly labeled water does comprised of 1.25g 10% oxygen-18 and 0.1 g 100% deuterium/kg body weight. The samples were collected hourly for 12 hrs on the first day and then morning, midday, and evening samples were collected for the next 14 days. The samples were analyzed using an isotope ratio mass spectrometer. For the TBW, time to equilibration was determined using three commonly employed data analysis approaches. Isotopic equilibration was reached in 90% of the sample by hour 6, and in 100% of the sample by hour 7. With regard to the TBW estimations, the optimal time for urine collection was found to be between hours 4 and 10 as to where there was no significant difference between values. In contrast, statistically significant differences in TBW estimations were found between hours 1-3 and from 11-12 when compared with hours 4-10. Most of the individuals in this study were in equilibrium after 7 hours. The TEE equations of Prof Dale Scholler (Chicago, USA, IAEA) and Prof K.Westerterp were compared with that of Prof. Andrew Coward (Dunn Nutrition Centre). When comparing values derived from samples collected in the morning and evening there was no effect of time or equation on resulting TEE values. The fourth study was a pilot study (n=1) to test the variability in TEE as a result of manipulations in fluid consumption and level of physical activity; the magnitude of change which may be expected in a sedentary adult. Physical activity levels were manipulated by increasing the number of steps per day to mimic the increases that may result when a sedentary individual commences an activity program. The study was comprised of three sub-studies completed on the same individual over a period of 8 months. There were no significant changes in TBW across all studies, even though the elimination rates changed with the supplemented water intake and additional physical activity. The extra activity may not have sufficiently strenuous enough and the water intake high enough to cause a significant change in the TBW and hence the CO2 production and TEE values. The TEE values measured show good agreement based on the estimated values calculated on an RMR of 1455 kcal/day, a DIT of 10% of TEE and activity based on measured steps. The covariance values tracked when plotting the residuals were found to be representative of “well-behaved” data and are indicative of the analytical accuracy. The ratio and product plots were found to reflect the water turnover and CO2 production and thus could, with further investigation, be employed to identify the changes in physical activity.
Resumo:
This prospective study examined the association between physical activity and the incidence of self-reported stiff or painful joints (SPJ) among mid-age women and older women over a 3-year period. Data were collected from cohorts of mid-age (48–55 years at Time 1; n = 4,780) and older women (72–79 years at Time 1; n = 3,970) who completed mailed surveys 3 years apart for the Australian Longitudinal Study on Women's Health. Physical activity was measured with the Active Australia questions and categorized based on metabolic equivalent value minutes per week: none (<40 MET.min/week); very low (40 to <300 MET.min/week); low (300 to <600 MET.min/week); moderate (600 to <1,200 MET.min/week); and high (1,200+ MET.min/week). Cohort-specific logistic regression models were used to examine the association between physical activity at Time 1 and SPJ 'sometimes or often' and separately 'often' at Time 2. Respondents reporting SPJ 'sometimes or often' at Time 1 were excluded from analysis. In univariate models, the odds of reporting SPJ 'sometimes or often' were lower for mid-age respondents reporting low (odds ratio (OR) = 0.77, 95% confidence interval (CI) = 0.63–0.94), moderate (OR = 0.82, 95% CI = 0.68–0.99), and high (OR = 0.75, 95% CI = 0.62–0.90) physical activity levels and for older respondents who were moderately (OR = 0.80, 95% CI = 0.65–0.98) or highly active (OR = 0.83, 95% CI = 0.69–0.99) than for those who were sedentary. After adjustment for confounders, these associations were no longer statistically significant. The odds of reporting SPJ 'often' were lower for mid-age respondents who were moderately active (OR = 0.71, 95% CI = 0.52–0.97) than for sedentary respondents in univariate but not adjusted models. Older women in the low (OR = 0.72, 95% CI = 0.55–0.96), moderate (OR = 0.54, 95% CI = 0.39–0.76), and high (OR = 0.61, 95% CI = 0.46–0.82) physical activity categories had lower odds of reporting SPJ 'often' at Time 2 than their sedentary counterparts, even after adjustment for confounders. These results are the first to show a dose–response relationship between physical activity and arthritis symptoms in older women. They suggest that advice for older women not currently experiencing SPJ should routinely include counseling on the importance of physical activity for preventing the onset of these symptoms.
Resumo:
High levels of sitting have been linked with poor health outcomes. Previously a pragmatic MTI accelerometer data cut-point (100 count/min-1) has been used to estimate sitting. Data on the accuracy of this cut-point is unavailable. PURPOSE: To ascertain whether the 100 count/min-1 cut-point accurately isolates sitting from standing activities. METHODS: Participants fitted with an MTI accelerometer were observed performing a range of sitting, standing, light & moderate activities. 1-min epoch MTI data were matched to observed activities, then re-categorized as either sitting or not using the 100 count/min-1 cut-point. Self-report demographics and current physical activity were collected. Generalized estimating equation for repeated measures with a binary logistic model analyses (GEE), corrected for age, gender and BMI, were conducted to ascertain the odds of the MTI data being misclassified. RESULTS: Data were from 26 healthy subjects (8 men; 50% aged <25 years; mean BMI (SD) 22.7(3.8)m/kg2). MTI sitting and standing data mode was 0 count/min-1, with 46% of sitting activities and 21% of standing activities recording 0 count/min-1. The GEE was unable to accurately isolate sitting from standing activities using the 100 count/min-1 cut-point, since all sitting activities were incorrectly predicted as standing (p=0.05). To further explore the sensitivity of MTI data to delineate sitting from standing, the upper 95% confidence interval of the mean for the sitting activities (46 count/min-1) was used to re-categorise the data; this resulted in the GEE correctly classifying 49% of sitting, and 69% of standing activities. Using the 100 count/min-1 cut-point the data were re-categorised into a combined ‘sit/stand’ category and tested against other light activities: 88% of sit/stand and 87% of light activities were accurately predicted. Using Freedson’s moderate cut-point of 1952 count/min-1 the GEE accurately predicted 97% of light vs. 90% of moderate activities. CONCLUSION: The distributions of MTI recorded sitting and standing data overlap considerably, as such the 100 count/min -1 cut-point did not accurately isolate sitting from other static standing activities. The 100 count/min -1 cut-point more accurately predicted sit/stand vs. other movement orientated activities.
Resumo:
In addition to the well-known health risks associated with lack of physical activity (PA), evidence is emerging about the health risks of sedentary behaviour (sitting). Research about patterns and correlates of sitting and PA in older women is scarce. METHODS: Self-report data from 6,116 women aged 76-81 years were collected as part of the Australian Longitudinal Study on Woman’s Health. Linear regression models were computed to examine whether demographic, social and health factors were associated with sitting and PA. RESULTS: Women who did no PA sat more than women who did any PA (p<0.001). Seven correlates were associated with sitting and PA (p<0.05). Five of these were associated with more sitting and less PA: three health-related (BMI, chronic conditions, anxiety/depression) and two social correlates (caring duties, volunteering). One demographic (being from another English-speaking country) and one social correlate (more social interaction) were associated with more sitting and more PA. Four correlates, two demographic (living in a city; post-high school education), one social (being single), and one health-related correlate (dizziness/loss of balance) were associated with more sitting only. Two other health-related correlates (stiff/painful joints; feet problems) were associated with less PA only. CONCLUSION: Sedentary behaviour and PA are distinct behaviours in older Australian women. Information about the correlates of both behaviours can be used to identify population groups who might benefit from interventions to reduce sedentary behaviour and/or increase PA.
Resumo:
Physical inactivity is a serious concern both nationally and internationally. Despite the numerous benefits of performing regular physical activity, many individuals lead sedentary lifestyles. Of concern, though, is research showing that some population sub-groups are less likely to be active, such as parents of young children. Although there is a vast amount of research dedicated to understanding people.s physical activity-related behaviours, there is a paucity of research examining those factors that influence parental physical activity. More importantly, research applying theoretical models to understand physical activity decision-making among this at-risk population is limited. Given the current obesity epidemic, the decline in physical activity with parenthood, and the many social and health benefits associated with regular physical activity, it is important that adults with young children are sufficiently active. In light of the dearth of research examining parental physical activity and the scant research applying a theory-based approach to gain this understanding, the overarching aim of the current program of research was to adopt a mixed methods approach as well as use sound theoretical frameworks to understand the regular physical activity behaviour of mothers and fathers with young children. This program of research comprised of three distinct stages: a qualitative stage exploring individual, social, and psychological factors that influence parental regular physical activity (Stage 1); a quantitative stage identifying the important predictors of parental regular physical activity intentions and behaviour using sound theoretical frameworks and testing a single-item measure for assessing parental physical activity behaviour (Stage 2); and a qualitative stage exploring strategies for an intervention program aimed at increasing parental regular physical activity (Stage 3). As a thesis by publication, eight papers report the findings of this program of research; these papers are presented according to the distinct stages of investigation that guided this program of research. Stage One of the research program comprised a qualitative investigation using a focus group/interview methodology with parents of children younger than 5 years of age (N = 40; n = 21 mothers, n = 19 fathers) (Papers 1, 2, and 3). Drawing broadly on a social constructionist approach (Paper 1), thematic analytic methods revealed parents. understandings of physical activity (e.g., requires effort), patterns of physical activity-related behaviours (e.g., grab it when you can, declining physical activity habits), and how constructions of social role expectations might influence parents. physical activity decision making (e.g., creating an active family culture, guilt and selfishness). Drawing on the belief-based framework of the TPB (Paper 2), thematic content analytic methods revealed parents. commonly held beliefs about the advantages (e.g., improves parenting practices), disadvantages (e.g., interferes with commitments), barriers (e.g., time), and facilitators (e.g., social support) to performing regular physical activity. Parents. normative beliefs about social approval from important others or groups (e.g., spouse/partner) were also identified. Guided by theories of social support, Paper Three identified parents. perceptions about the specific social support dimensions that influence their physical activity decision making. Thematic content analysis identified instrumental (e.g., providing childcare, taking over chores), emotional (e.g., encouragement, companionship), and informational support (e.g., ideas and advice) as being important to the decision-making of parents in relation to their regular physical activity behaviour. The results revealed also that having support for being active is not straightforward (e.g., guilt-related issues inhibited the facilitative nature of social support for physical activity). Stage Two of the research program comprised a quantitative examination of parents. physical activity intentions and behaviour (Papers 4, 5, 6, and 7). Parents completed an extended TPB questionnaire at Time 1 (N = 580; n = 288 mothers, n = 292 fathers) and self-reported their physical activity at Time 2, 1 week later (N = 458; n = 252 mothers, n = 206 fathers). Paper Four revealed key behavioural (e.g., improving parenting practices), normative (e.g., people I exercise with), and control (e.g., lack of time) beliefs as significant independent predictors of parental physical activity. A test of the TPB augmented to include the constructs of self-determined motivation and planning was assessed in Paper Five. The findings revealed that the effect of self-determined motivation on intention was fully mediated by the TPB variables and the impact of intention on behaviour was partially mediated by the planning variables. Slight differences in the model.s motivational sequence between the sexes were also noted. Paper Six investigated, within a TPB framework, a range of social influences on parents. intentions to be active. For both sexes, attitude, perceived behavioural control, group norms, friend general support, and an active parent identity predicted intentions, with subjective norms and family support further predicting mothers. intentions and descriptive norms further predicting fathers. intentions. Finally, the measurement of parental physical activity was investigated in Paper Seven of Stage Two. The results showed that parents are at risk of low levels of physical activity, with the findings also revealing validation support for a brief single-item physical activity measure. Stage Three of the research program comprised a qualitative examination of parents. (N = 12; n = 6 mothers, n = 6 fathers) ideas for strategies that may be useful for developing and delivering an intervention program aimed at increasing parental physical activity (Paper 8). Parents revealed a range of strategies for what to include in a physical activity intervention designed for parents of young children. For example, parents identified persuasion and information type messages, problem-solving strategies that engage parents in generating a priority list of their lifestyle commitments, and behavioural modification techniques such as goal setting and incentives. Social intervention strategies (e.g., social comparison, counselling) and environmental approaches (e.g., community-based integrative parent/child programs) were also identified as was a skill-based strategy in helping parents generate a flexible life/family plan. Additionally, a range of strategies for how to best deliver a parental physical activity intervention was discussed. Taken as a whole, Paper Eight found that adopting a multifaceted approach in both the design and implementation of a resultant physical activity intervention may be useful in helping to increase parental physical activity. Overall, this program of research found support for parents as a unique group who hold both similar and distinctive perceptions about regular physical activity to the general adult population. Thus, these findings highlight the importance of targeting intervention strategies for parents of young children. Additionally, the findings suggest that it might also be useful to tailor some messages specifically to each sex. Effective promotion of physical activity in parents of young children is essential given the low rate of activity in this population. Results from this program of research highlight parents as an at-risk group for inactivity and provide an important first step in identifying the factors that influence both mothers. and fathers. physical activity decision making. These findings, in turn, provide a foundation on which to build effective intervention programs aimed at increasing parents. regular physical activity which is essential for ensuring the health and well-being of parents with young children.
Resumo:
It is frequently reported that the actual weight loss achieved through exercise interventions is less than theoretically expected. Amongst other compensatory adjustments that accompany exercise training (e.g., increases in resting metabolic rate and energy intake), a possible cause of the less than expected weight loss is a failure to produce a marked increase in total daily energy expenditure due to a compensatory reduction in non-exercise activity thermogenesis (NEAT). Therefore, there is a need to understand how behaviour is modified in response to exercise interventions. The proposed benefits of exercise training are numerous, including changes to fat oxidation. Given that a diminished capacity to oxidise fat could be a factor in the aetiology of obesity, an exercise training intensity that optimises fat oxidation in overweight/obese individuals would improve impaired fat oxidation, and potentially reduce health risks that are associated with obesity. To improve our understanding of the effectiveness of exercise for weight management, it is important to ensure exercise intensity is appropriately prescribed, and to identify and monitor potential compensatory behavioural changes consequent to exercise training. In line with the gaps in the literature, three studies were performed. The aim of Study 1 was to determine the effect of acute bouts of moderate- and high-intensity walking exercise on NEAT in overweight and obese men. Sixteen participants performed a single bout of either moderate-intensity walking exercise (MIE) or high-intensity walking exercise (HIE) on two separate occasions. The MIE consisted of walking for 60-min on a motorised treadmill at 6 km.h-1. The 60-min HIE session consisted of walking in 5-min intervals at 6 km.h-1 and 10% grade followed by 5-min at 0% grade. NEAT was assessed by accelerometer three days before, on the day of, and three days after the exercise sessions. There was no significant difference in NEAT vector magnitude (counts.min-1) between the pre-exercise period (days 1-3) and the exercise day (day 4) for either protocol. In addition, there was no change in NEAT during the three days following the MIE session, however NEAT increased by 16% on day 7 (post-exercise) compared with the exercise day (P = 0.32). During the post-exercise period following the HIE session, NEAT was increased by 25% on day 7 compared with the exercise day (P = 0.08), and by 30-33% compared with the pre-exercise period (day 1, day 2 and day 3); P = 0.03, 0.03, 0.02, respectively. To conclude, a single bout of either MIE or HIE did not alter NEAT on the exercise day or on the first two days following the exercise session. However, extending the monitoring of NEAT allowed the detection of a 48 hour delay in increased NEAT after performing HIE. A longer-term intervention is needed to determine the effect of accumulated exercise sessions over a week on NEAT. In Study 2, there were two primary aims. The first aim was to test the reliability of a discontinuous incremental exercise protocol (DISCON-FATmax) to identify the workload at which fat oxidation is maximised (FATmax). Ten overweight and obese sedentary male men (mean BMI of 29.5 ¡Ó 4.5 kg/m2 and mean age of 28.0 ¡Ó 5.3 y) participated in this study and performed two identical DISCON-FATmax tests one week apart. Each test consisted of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The starting work load of 28 W was increased every 4-min using 14 W increments followed by 2-min rest intervals. When the respiratory exchange ratio was consistently >1.0, the workload was increased by 14 W every 2-min until volitional exhaustion. Fat oxidation was measured by indirect calorimetry. The mean FATmax, ƒtV O2peak, %ƒtV O2peak and %Wmax at which FATmax occurred during the two tests were 0.23 ¡Ó 0.09 and 0.18 ¡Ó 0.08 (g.min-1); 29.7 ¡Ó 7.8 and 28.3 ¡Ó 7.5 (ml.kg-1.min-1); 42.3 ¡Ó 7.2 and 42.6 ¡Ó 10.2 (%ƒtV O2max) and 36.4 ¡Ó 8.5 and 35.4 ¡Ó 10.9 (%), respectively. A paired-samples T-test revealed a significant difference in FATmax (g.min-1) between the tests (t = 2.65, P = 0.03). The mean difference in FATmax was 0.05 (g.min-1) with the 95% confidence interval ranging from 0.01 to 0.18. Paired-samples T-test, however, revealed no significant difference in the workloads (i.e. W) between the tests, t (9) = 0.70, P = 0.4. The intra-class correlation coefficient for FATmax (g.min-1) between the tests was 0.84 (95% confidence interval: 0.36-0.96, P < 0.01). However, Bland-Altman analysis revealed a large disagreement in FATmax (g.min-1) related to W between the two tests; 11 ¡Ó 14 (W) (4.1 ¡Ó 5.3 ƒtV O2peak (%)).These data demonstrate two important phenomena associated with exercise-induced substrate oxidation; firstly, that maximal fat oxidation derived from a discontinuous FATmax protocol differed statistically between repeated tests, and secondly, there was large variability in the workload corresponding with FATmax. The second aim of Study 2 was to test the validity of a DISCON-FATmax protocol by comparing maximal fat oxidation (g.min-1) determined by DISCON-FATmax with fat oxidation (g.min-1) during a continuous exercise protocol using a constant load (CONEX). Ten overweight and obese sedentary males (BMI = 29.5 ¡Ó 4.5 kg/m2; age = 28.0 ¡Ó 4.5 y) with a ƒtV O2max of 29.1 ¡Ó 7.5 ml.kg-1.min-1 performed a DISCON-FATmax test consisting of alternate 4-min exercise and 2-min rest intervals on a cycle ergometer. The 1-h CONEX protocol used the workload from the DISCON-FATmax to determine FATmax. The mean FATmax, ƒtV O2max, %ƒtV O2max and workload at which FATmax occurred during the DISCON-FATmax were 0.23 ¡Ó 0.09 (g.min-1); 29.1 ¡Ó 7.5 (ml.kg-1.min-1); 43.8 ¡Ó 7.3 (%ƒtV O2max) and 58.8 ¡Ó 19.6 (W), respectively. The mean fat oxidation during the 1-h CONEX protocol was 0.19 ¡Ó 0.07 (g.min-1). A paired-samples T-test revealed no significant difference in fat oxidation (g.min-1) between DISCON-FATmax and CONEX, t (9) = 1.85, P = 0.097 (two-tailed). There was also no significant correlation in fat oxidation between the DISCON-FATmax and CONEX (R=0.51, P = 0.14). Bland- Altman analysis revealed a large disagreement in fat oxidation between the DISCONFATmax and CONEX; the upper limit of agreement was 0.13 (g.min-1) and the lower limit of agreement was ¡V0.03 (g.min-1). These data suggest that the CONEX and DISCONFATmax protocols did not elicit different rates of fat oxidation (g.min-1). However, the individual variability in fat oxidation was large, particularly in the DISCON-FATmax test. Further research is needed to ascertain the validity of graded exercise tests for predicting fat oxidation during constant load exercise sessions. The aim of Study 3 was to compare the impact of two different intensities of four weeks of exercise training on fat oxidation, NEAT, and appetite in overweight and obese men. Using a cross-over design 11 participants (BMI = 29 ¡Ó 4 kg/m2; age = 27 ¡Ó 4 y) participated in a training study and were randomly assigned initially to: [1] a lowintensity (45%ƒtV O2max) exercise (LIT) or [2] a high-intensity interval (alternate 30 s at 90%ƒtV O2max followed by 30 s rest) exercise (HIIT) 40-min duration, three times a week. Participants completed four weeks of supervised training and between cross-over had a two week washout period. At baseline and the end of each exercise intervention,ƒtV O2max, fat oxidation, and NEAT were measured. Fat oxidation was determined during a standard 30-min continuous exercise bout at 45%ƒtV O2max. During the steady state exercise expired gases were measured intermittently for 5-min periods and HR was monitored continuously. In each training period, NEAT was measured for seven consecutive days using an accelerometer (RT3) the week before, at week 3 and the week after training. Subjective appetite sensations and food preferences were measured immediately before and after the first exercise session every week for four weeks during both LIT and HIIT. The mean fat oxidation rate during the standard continuous exercise bout at baseline for both LIT and HIIT was 0.14 ¡Ó 0.08 (g.min-1). After four weeks of exercise training, the mean fat oxidation was 0.178 ¡Ó 0.04 and 0.183 ¡Ó 0.04 g.min-1 for LIT and HIIT, respectively. The mean NEAT (counts.min-1) was 45 ¡Ó 18 at baseline, 55 ¡Ó 22 and 44 ¡Ó 16 during training, and 51 ¡Ó 14 and 50 ¡Ó 21 after training for LIT and HIIT, respectively. There was no significant difference in fat oxidation between LIT and HIIT. Moreover, although not statistically significant, there was some evidence to suggest that LIT and HIIT tend to increase fat oxidation during exercise at 45% ƒtV O2max (P = 0.14 and 0.08, respectively). The order of training treatment did not significantly influence changes in fat oxidation, NEAT, and appetite. NEAT (counts.min-1) was not significantly different in the week following training for either LIT or HIIT. Although not statistically significant (P = 0.08), NEAT was 20% lower during week 3 of exercise training in HIIT compared with LIT. Examination of appetite sensations revealed differences in the intensity of hunger, with higher ratings after LIT compared with HIIT. No differences were found in preferences for high-fat sweet foods between LIT and HIIT. In conclusion, the results of this thesis suggest that while fat oxidation during steady state exercise was not affected by the level of exercise intensity, there is strong evidence to suggest that intense exercise could have a debilitative effect on NEAT.