909 resultados para secure European System for Applications in a Multi-Vendor Environment (SESAME)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon-based organocatalysts: In an effort to study the effects of substituting carbon by silicon within the catalyst backbone, we developed an efficient synthesis of (S)-2-triphenylsilylpyrrolidine [(S)-2]. The evaluation of (S)-2 against its carbon analogue (S)-1 in two organocatalytic reactions is complemented by computational studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the provenance of data, i.e. the process that led to that data, is vital in many disciplines. For example, in science, the process that produced a given result must be demonstrably rigorous for the result to be deemed reliable. A provenance system supports applications in recording adequate documentation about process executions to answer queries regarding provenance, and provides functionality to perform those queries. Several provenance systems are being developed, but all focus on systems in which the components are textitreactive, for example Web Services that act on the basis of a request, job submission system, etc. This limitation means that questions regarding the motives of autonomous actors, or textitagents, in such systems remain unanswerable in the general case. Such questions include: who was ultimately responsible for a given effect, what was their reason for initiating the process and does the effect of a process match what was intended to occur by those initiating the process? In this paper, we address this limitation by integrating two solutions: a generic, re-usable framework for representing the provenance of data in service-oriented architectures and a model for describing the goal-oriented delegation and engagement of agents in multi-agent systems. Using these solutions, we present algorithms to answer common questions regarding responsibility and success of a process and evaluate the approach with a simulated healthcare example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropic Magnetoresistive (AMR) sensors shows a new possibility to detect magnetic fields produced by magnetic particles present in the gastrointestinal (GI) tract. A system that uses excitation and detection of magnetic field was developed using AMR sensor. A magnetic flux concentrator was also studied to increase the sensitivity of AMR in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid hormones (THs) have long been known to have regulatory roles in the differentiation and maturation of vertebrate embryos, beginning with the knowledge that hormones of maternal origin are essential for human fetal central nervous and respiratory system development. Precise measurements of circulating THs led to insights into their critically important actions throughout vertebrate growth and development, initially with amphibian metamorphosis and including embryogenesis in fishes. Thyroid cues for larval fish differentiation are enhanced by glucocorticoid hormones, which promote deiodinase activity and thereby increase the generation of triiodothyronine (T-3) from the less bioactive thyroxin (T-4). Glucocorticoids also induce the expression of thyroid hormone receptors in some vertebrates. Maternally derived thyroid hormones and cortisol are deposited in fish egg yolk and accelerate larval organ system differentiation until larvae become capable of endogenous endocrine function. Increases in the T-3/T-4 ratio during larval development may reflect the regulatory importance of maternal thyroid hormones. Experimental applications of individual hormones have produced mixed results, but treatments with combinations of thyroid and corticoid hormones consistently promote larval fish development and improve survival rates. The developmental and survival benefits of maternal endocrine provisioning are increased in viviparous fishes, in which maternal/larval chemical contact is prolonged. Treatments with exogenous thyroid and corticoid hormones consistently promote development and reduce mortality rates in larval fishes, with potential hatchery-scale applications in aquaculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years speleothem has been intensely studied due to its great potential of registering paleoclimate proxies but some considerably uncertaintiesregarding speleothem proxy interpretation still exist. In order to minimize these uncertainties, multi-proxy approach has been used. Here is presented the strontium isotope record from Bunker cave, northwest Germany. This cave was previously studied and has proved well record paleoclimate changes during Holocene for central Europe.87Sr/86Sr ratio is presented for rain water, A-horizon soil (water and leachate), C-horizon soil (water and leachate), host rock and host rock leachate, drip water and from a stalagmite (Bu4) previously dated covering the Holocene. Upper soil presented the higher values in contrast with host rock (lower values). Drip water and C-horizon presented intermediated ratios. Sr isotopesare used to track the source of 87Sr/86Sr in the Bunker system, resulting in a mixture between A-horizon soil, C-horizon soil and host rock. A decreasing trend in Bu4 indicates change in the Sr source in the system