947 resultados para secondary mathematics
Resumo:
Background
When asked to solve mathematical problems, some people experience anxiety and threat, which can lead to impaired mathematical performance (Curr Dir Psychol Sci 11:181–185, 2002). The present studies investigated the link between mathematical anxiety and performance on the cognitive reflection test (CRT; J Econ Perspect 19:25–42, 2005). The CRT is a measure of a person’s ability to resist intuitive response tendencies, and it correlates strongly with important real-life outcomes, such as time preferences, risk-taking, and rational thinking.
Methods
In Experiments 1 and 2 the relationships between maths anxiety, mathematical knowledge/mathematical achievement, test anxiety and cognitive reflection were analysed using mediation analyses. Experiment 3 included a manipulation of working memory load. The effects of anxiety and working memory load were analysed using ANOVAs.
Results
Our experiments with university students (Experiments 1 and 3) and secondary school students (Experiment 2) demonstrated that mathematical anxiety was a significant predictor of cognitive reflection, even after controlling for the effects of general mathematical knowledge (in Experiment 1), school mathematical achievement (in Experiment 2) and test anxiety (in Experiments 1–3). Furthermore, Experiment 3 showed that mathematical anxiety and burdening working memory resources with a secondary task had similar effects on cognitive reflection.
Conclusions
Given earlier findings that showed a close link between cognitive reflection, unbiased decisions and rationality, our results suggest that mathematical anxiety might be negatively related to individuals’ ability to make advantageous choices and good decisions.
Resumo:
Linguistic influences in mathematics have previously been explored throughsubtyping methodology and by taking advantage of the componential nature ofmathematics and variations in language requirements that exist across tasks. Thepresent longitudinal investigation aimed to examine the language requirements of mathematical tasks in young children aged 5-7 years. Initially, 256 children were screened for mathematics and reading difficulties using standardised measures. Those scoring at or below the 35th percentile on either dimension were classified as having difficulty. From this screening, 115 children were allocated to each of the MD (n=26), MDRD (n=32), reading difficulty (RD, n=22) and typically achieving (TA, n=35) subtypes. These children were tested at four time points, separated by six monthly intervals, on a battery of seven mathematical tasks. Growth curve analysis indicated that, in contrast to previous research on older children, young children with MD and MDRD had very similar patterns of development on all mathematical tasks. Overall, the subtype comparisons suggested that language played only a minor mediating role in most tasks, and this was secondary in importance to non-verbal skills. Correlational evidence suggested that children from the different subtypescould have been using different mixes of verbal and non-verbal strategies to solve the mathematical problems.
Resumo:
This study is a secondary data analysis of the Trends in Mathematics and Science Study 2003 (TIMSS) to determine if there is a gender bias, unbalanced number of items suited to the cognitive skill of one gender, and to compare performance by location. Results of the Grade 8, math portion of the test were examined. Items were coded as verbal, spatial, verbal /spatial or neither and as conventional or unconventional. A Kruskal- Wallis was completed for each category, comparing performance of students from Ontario, Quebec, and Singapore. A Factor Analysis was completed to determine if there were item categories with similar characteristics. Gender differences favouring males were found in the verbal conventional category for Canadian students and in the spatial conventional category for students in Quebec. The greatest differences were by location, as students in Singapore outperformed students from Canada in all areas except for the spatial unconventional category. Finally, whether an item is conventional or unconventional is more important than whether the item is verbal or spatial. Results show the importance of fair assessment for the genders in both the classroom and on standardized tests.
Resumo:
This thesis research was a qualitative case study of a single class of Interdisciplinary Studies: Introduction to Engineering taught in a secondary school. The study endeavoured to explore students' experiences in and perceptions of the course, and to investigate the viability of engineering as an interdisciplinary theme at the secondary school level. Data were collected in the form of student questionnaires, the researcher's observations and reflections, and artefacts representative of students' work. Data analysis was performed by coding textual data and classifying text segments into common themes. The themes that emerged from the data were aligned with facets of interdisciplinary study, including making connections, project-based learning, and student engagement and affective outcomes. The findings of the study showed that students were positive about their experiences in the course, and enjoyed its project-driven nature. Content from mathematics, physics, and technological design was easily integrated under the umbrella of engineering. Students felt that the opportunity to develop problem solving and teamwork skills were two of the most important aspects of the course and could be relevant not only for engineering, but for other disciplines or their day-to-day lives after secondary school. The study concluded that engineering education in secondary school can be a worthwhile experience for a variety of students and not just those intending postsecondary study in engineering. This has implications for the inclusion of engineering in the secondary school curriculum and can inform the practice of curriculum planners at the school, school board, and provincial levels. Suggested directions for further research include classroom-based action research in the areas of technological education, engineering education in secondary school, and interdisciplinary education.
Resumo:
This is a study of the implementation and impact of formative assessment strategies on the motivation and self-efficacy of secondary school mathematics students. An explanatory sequential mixed methods design was implemented where quantitative and qualitative data were collected and analyzed sequentially in 2 different phases. The first phase involved quantitative data from student questionnaires and the second phase involved qualitative data from individual student and teacher interviews. The findings of the study suggest that formative assessment is implemented in practice in diverse ways and is a process where the strategies are interconnected. Teachers experience difficulty in incorporating peer and self-assessment and perceive a need for exemplars. Key factors described as influencing implementation include teaching philosophies, interpretation of ministry documents, teachers’ experiences, leadership in administration and department, teacher collaboration, misconceptions of teachers, and student understanding of formative assessment. Findings suggest that overall, formative assessment positively impacts student motivation and self-efficacy, because feedback is provided which offers encouragement and recognition by highlighting the progress that has been made and what steps need to be taken to improve. However, students are impacted differently with some considerations including how students perceive mistakes and if they fear judgement. Additionally, the impact of formative assessment is influenced by the connection between self-efficacy and motivation, namely how well a student is doing is a source of both concepts.
Resumo:
The aim of this paper is a comprehensive presentation of some important basic and general aspects of the topic applications and modelling, with emphasis on the secondary school level. Owing to the review character of this paper, some overlap with the survey paper Blum and Niss (1989) for ICME-6 in Budapest is inevitable. The paper will consist of three parts. In part 1, I shall try to clarify some basic concepts and remind the reader of a few application and modelling examples suitable for teaching. In part 2, I shall formulate some general aims for mathematics instruction and, on that basis, summarise the most important arguments for and against applications and modelling in mathematics teaching. Finally, in part 3, I shall discuss some relevant instructional aspects resulting from the considerations in part 2.
Resumo:
Curso de Matemáticas para superar el examen IGCSE (International General Certificate of Secondary Education) según la especificación A de Edexcel. Contiene: estudio de los números, álgebra, secuencias, funciones y gráficos, formas, vectores y transformaciones, geometría y estadística. Incluye ejercicios de respuesta múltiple en cada apartado y al término de cada capítulo, con soluciones disponibles al final del libro para comprobar el nivel de los conocimientos adquiridos, y un resumen de las fórmulas más importantes que se pueden necesitar durante el examen.
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (OCR) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: trabajar con números, algebra, ecuaciones, ratio y proporción, cálculos estadísticos, el teorema de Pitágoras, trigonometría, representación e interpretación de datos, fracciones decimales y porcentajes, vectores, calculadoras, geometría, longitud área y volumen. El libro está repleto de gráficos e ilustraciones que ayudan de cara a realizar los ejercicios.
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (OCR) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: trabajar con números, algebra, integrales, ecuaciones, ratio y proporción, cálculos estadísticos, el teorema de Pitágoras, trigonometría, representación e interpretación de datos, fracciones decimales y porcentajes, vectores, calculadoras, geometría, longitud área y volumen. El libro está repleto de gráficos e ilustraciones que ayudan de cara a realizar los ejercicios.
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (AQA) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: tipos de números (números enteros, números primos, integrales positivas y negativas, sumando, restando, multiplicando y dividiendo integrales positivas y negativas), secuencias, fracciones (sumando, restando, multiplicando y dividiendo fracciones) decimales (sumando, restando, dividiendo y multiplicando decimales), trabajando con símbolos, coordenadas, ecuaciones, porcentajes, índices, gráficos, fórmulas, ratio y proporción.
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (AQA) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: fracciones y decimales, ángulos y áreas (líneas paralelas, triángulos, circunferencia y área de un círculo), trabajando con símbolos, porcentajes y ratios, volumen de un prisma, ecuaciones y fórmulas, propiedades de los polígonos, gráficos, teorema de Pitágoras, propiedades de los círculos, medidas, trigonometría, vectores, funciones exponenciales, el seno, el coseno, volúmenes y áreas de pirámides, conos y esferas.
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (AQA) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: los números (tipos de números, fracciones, decimales, porcentajes, ratio y proporción), estadísticas (reuniendo y representando datos, probabilidad), álgebra (secuencias y símbolos, ecuaciones y fórmulas, coordenadas y gráficos), geometría y medida (ángulos, perímetro, área y volumen, medidas, el teorema de Pitágoras).
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (OCR) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: trabajando con números (potencias y raíces en la calculadora, números primos, multiplicando y dividiendo números negativos), álgebra, diagramas estadísticos (dibujando e interpretando gráficos), ecuaciones (fracciones en ecuaciones), ratio y proporción, cálculos estadísticos, el teorema de Pitágoras, fórmulas, medidas, secuencias, muestreos, trigonometría, representando e interpretando datos.
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (OCR) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: integrales, algebra, decimales, fórmulas, ecuaciones, coordenadas, cálculos estadísticos, secuencias, medidas, usando una calculadora, diagramas estadísticos, potencias y raíces, ratio y proporción, teorema de Pitágoras, trabajando con números, ángulos, triángulos y cuadriláteros, fracciones, círculos y polígonos, índices y potencias, gráficos, porcentajes, rotación, perímetro, área y volumen.
Resumo:
Este libro cumple las expectativas de los alumnos de matemáticas en relación a los exámenes de secundaria (KS3) para obtener el General Certificate of Secondary Education (GCSE). Los temas del libro son: trabajando con números, probabilidad, porcentajes, ratio y proporción, productos algebraicos, desigualdades, factores algebraicos, organizando y resumiendo datos, fórmulas, sistema de ecuaciones, ecuaciones de segundo grado, gráficos, áreas y volúmenes, transformaciones, figuras similares, trigonometría: tangente de un ángulo, el seno y el coseno de un ángulo, geometría.