722 resultados para sciatic neuropathy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allodynia (pain in response to normally non painful stimulation) and paresthesia (erroneous sensory experience) are two debilitating symptoms of neuropathic pain. These stem, at least partly, from profound changes in the non-nociceptive sensory pathway that comprises large myelinated neuronal afferents terminating in the gracile and cuneate nuclei. Further than neuronal changes, well admitted evidence indicates that glial cells (especially in the spinal cord) are key actors in neuropathic pain, in particular the possible alteration in astrocytic capacity to reuptake neurotransmitters (glutamate and GABA). Yet, the possibility of such a changed astrocytic scavenging capacity remains unexplored in the dorsal column pathway. The present study was therefore undertaken to assess whether peripheral nerve injury (spared nerve injury model, SNI) could trigger a glial reaction, and especially changes in glutamate and GABA transporters, in the gracile nucleus. SNI surgery was performed on male Sprague-Dawley rats. Seven days after surgery, rats were used for immunofluorescence (fixation and brain slicing), western-blot (fresh brain freezing and protein extraction) or GABA reuptake on synaptosomes. We found that SNI results in a profound glial reaction in the ipsilateral gracile nucleus. This reaction was characterized by an enhanced immunolabelling for microglial marker Iba1 as well as astrocytic protein GFAP (further confirmed by western-blot, p <0.05, n = 7). These changes were not observed in sham animals. Immunofluorescence and western-blot analysis shows that the GABA transporter GAT-1 is upregulated in the ipsilateral gracile nucleus (p <0.001; n = 7), with no detectable change in GAT-3 or glutamate transporters EAAT-1 and EAAT-2. Double immunoflurescence shows that GAT-1 and GFAP colocalize within the same cells. Furthermore, the upregulation of GFAP and GAT-1 were shown to occur all along the rostrocaudal axis of the gracile nucleus. Finally, synaptosomes from ipsilateral gracile nucleus show an increased capacity to reuptake GABA. Together, the data presented herein show that glial cells in the gracile nucleus react to neuropathic lesion, in particular through an upregulation of the GABA transporter GAT-1. Hence, this study points to role of an increased GABA transport in the dorsal column nuclei in neuropathic pain, calling attention to GAT-1 as a putative future pharmacological target to treat allodynia and paresthesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The object of this study was to evaluate the contribution of carotid distensibilty on baroreflex sensitivity in patients with type 2 diabetes mellitus with at least 2 additional cardiovascular risk factors. Carotid distensibility was measured bilaterally at the common carotid artery in 79 consecutive diabetic patients and 60 matched subjects without diabetes. Spontaneous baroreflex sensitivity assessment was obtained using time and frequency methods. Baroreflex sensitivity was lower in diabetic subjects as compared with nondiabetic control subjects (5.25+/-2.80 ms/mm Hg versus 7.55+/-3.79 ms/mm Hg; P<0.01, respectively). Contrary to nondiabetic subjects, diabetic subjects showed no significant correlation between carotid distensibility and baroreflex sensitivity (r2=0.08, P=0.04 and r2=0.04, P=0.13, respectively). In diabetic subjects, baroreflex sensitivity was significantly lower in subjects with peripheral neuropathy than in those with preserved vibration sensation (4.1+/-0.5 versus 6.1+/-0.4 ms/mm Hg, respectively; P=0.005). Age in nondiabetic subjects, diabetes duration, systolic blood pressure, peripheral or sensitive neuropathy, and carotid distensibility were introduced in a stepwise multivariate analysis to identify the determinants of baroreflex sensitivity. In diabetic patients, neuropathy is a more sensitive determinant of baroreflex sensitivity than the reduced carotid distensibility (stepwise analysis; F ratio=5.1, P=0.028 versus F ratio=1.9, P=0.16, respectively). In diabetic subjects with 2 additional cardiovascular risk factors, spontaneous baroreflex sensitivity is not related to carotid distensibility. Diabetic subjects represent a particular population within the spectrum of cardiovascular risk situations because of the marked neuropathy associated with their metabolic disorder. Therefore, neuropathy is a more significant determinant of baroreflex sensitivity than carotid artery elasticity in patients with type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple age-dependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cellrich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/+/Lpin1fE2−3/fE2−3 , MPZCre/+/ScapfE1/fE1 and Pmp22-null mice. The majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte-rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutic approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies. *Current address: Department of Physiology, UCSF, San Francisco, CA, USA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared the pupil responses originating from outer versus inner retinal photoreception between patients with isolated hereditary optic neuropathy (HON, n = 8) and healthy controls (n = 8). Three different testing protocols were used. For the first two protocols, a response function of the maximal pupil contraction versus stimulus light intensity was generated and the intensity at which half of the maximal pupil contraction, the half-max intensity, was determined. For the third protocol, the pupil size after light offset, the re-dilation rate and re-dilation amplitude were calculated to assess the post-light stimulus response. Patients with HON had bilateral, symmetric optic atrophy and significant reduction of visual acuity and visual field compared to controls. There were no significant mean differences in the response curve and pupil response parameters that reflect mainly rod, cone or melanopsin activity between patients and controls. In patients, there was a significant correlation between the half-max intensity of the red light sequence and visual field loss. In conclusion, pupil responses derived from outer or inner retinal photoreception in HON patients having mild-to moderate visual dysfunction are not quantitatively different from age-matched controls. However, an association between the degree of visual field loss and the half-max intensity of the cone response suggests that more advanced stages of disease may lead to impaired pupil light reflexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factors appear as essential factors for normal development and repair of the nervous tissue. Veratrylguanidine methane sulfonate, has been shown to induce important neurite outgrowth of cultured dorsal root ganglia isolated from newborn rats. Its action was similar to that of NGF and was found to be additive to that of NGF. In order to see if this compound was able to stimulate axonal growth in adult animals, we examined the effect of this substance on the regeneration of the lesioned sciatic nerve. Using histochemical, immunohistochemical and ultrastructural studies, it is shown that a single intraperitoneal injection of veratrylguanidine methane sulfonate significantly increases the axonal growth during repair of the adult rat sciatic nerve. The efficiency of this substance is explained by its good targeting and long life time in the sciatic nerve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charcot-Marie-Tooth neuropathy (CMT) represents a heterogenous group of inherited disorders of the peripheral nervous system. One form of autosomal recessive demyelinating CMT (CMT4C, 5q32) is caused by mutations in the gene encoding KIAA1985, a protein of so far unknown function. Here we show that KIAA1985 is exclusively expressed in Schwann cells. KIAA1985 is tethered to cellular membranes through an N-terminal myristic acid anchor and localizes to the perinuclear recycling compartment. A search for proteins that interact with KIAA1985 identified the small GTPase Rab11, a key regulator of recycling endosome functions. CMT4C-related missense mutations disrupt the KIAA1985/Rab11 interaction. Protein binding studies indicate that KIAA1985 functions as a Rab11 effector, as it interacts only with active forms of Rab11 (WT and Q70L) and does not interact with the GDP locked mutant (S25N). Consistent with a function of Rab11 in Schwann cell myelination, myelin formation was strongly impaired when dorsal root ganglion neurons were co-cultured with Schwann cells infected with Rab11 S25N. Our data indicate that the KIAA1985/Rab11 interaction is relevant for peripheral nerve pathophysiology and place endosomal recycling on the list of cellular mechanisms involved in Schwann cell myelination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central and peripheral nervous systems are involved in multiple agedependent neurological deficits that are often attributed to alterations in function of myelinating glial cells. However, the molecular events that underlie the age-related decline of glial cell function are unknown. We used Schwann cells as a model to study biological processes affected in glial cells by aging. We comprehensively profiled gene expression of the Schwann cell-rich mouse sciatic nerve throughout life, from day of birth until senescence (840 days of age). We combined the aging data with the microarray transcriptional data obtained using nerves isolated from Schwann cell-specific neuropathy-inducing mutants MPZCre/þ/Lpin1fE2-3/fE2-3, MPZCre/þ/ScapfE1/fE1 and Pmp22-null mice. A majority of age related transcripts were also affected in the analyzed mouse models of neuropathy (54.4%) and in development (59.5%) indicating a high level of overlapping in implicated molecular pathways. We observed that compared to peripheral nerve development, dynamically changing expression profiles in aging have opposite (anticorrelated) orientation while they copy the orientation of transcriptional changes observed in analyzed neuropathy models. Subsequent clustering and biological annotation of dynamically changing transcripts revealed that the processes most significantly deregulated in aging include inflammatory/ immune response and lipid biosynthesis/metabolism. Importantly, the changes in these pathways were also observed in myelinated oligodendrocyte- rich optic nerves of aged mice, albeit with lower magnitude. This observation suggests that similar biological processes are affected in aging glial cells in central and peripheral nervous systems, however with different dynamics. Our data, which provide the first comprehensive comparison of molecular changes in glial cells in three distinct biological conditions comprising development, aging and disease, provide not only a new inside into the molecular alterations underlying neural system aging but also identify target pathways for potential therapeutical approaches to prevent or delay complications associated with age-related and inherited forms of neuropathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the proportions of regenerative and collateral sprouting to the skin after peripheral nerve injury. Methods: In the first experimental paradigm, primary afferent neurones were pre-labelled with Diamidino Yellow (DY), injected in digit 3, followed by sciatic nerve section and repair. After three months of regeneration, digit 3 was re-injected with Fast Blue (FB) to label regernating cells. Fluoro-Gold (FG) was applied to the femoral (FEM) and musculocutaneous (MC) nervers four days later to quantify their contribution to the innveration. In the second experimental paradigm, sciatic nerve was first sectioned and repaired. Three months later, the sciatic was resected, and digit 3 injected with FB. After four more days, FEM and MC were resected and FG injected in all digits. Results: Neurones in dorsal root ganglion (DRG) L5 had a higher rate of correct reinnervation of digit 3 (44-72%) than neurones in DRG L4 (14-44%). Like in control cases, only occasional axons were traced from the FEM and MC. In the second experiment, only occasional labelled neurones appeared. Conclusions: The results indicate differences in the capacity for correct peripheral sensory reinnvervation between segmental levels and that in this model collateral sprouting was practically non-existent compared to regenerative sprouting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was performed to investigate the possibility of 'aberrant' innervation of the tips of the hindlimb digits in the rat, i.e., from other sources than the femoral and the main sciatic branches (tibial, peroneal, sural). Cutaneous injections of fluorescent tracers in the digits were combined with either selective nerve transections to restrict afferent routes followed by detection of labeled neurons in dorsal root ganglia (DRGs), or by a delayed application of a second tracer to afferent nerves under study to detect double labeled neurons in DRGs. The results show that the tips of the digits were represented in DRGs L3-6. The femoral nerve afferents from digits 1 and 2 projected primarily to DRG L3 and to a smaller extent to DRG L4. A small number of neurons from primarily medial digits 1 and 2, but also from lateral digits 3-5, were found to project to DRGs L4 and L5 via a proximal branch that leaves the sciatic nerve near the sciatic notch and runs distally in the posterior part of the thigh, here called the musculocutaneous nerve of the hindlimb. We also have some evidence indicating innervation of the tips of the digits from the posterior cutaneous nerve of the thigh. Aberrant innervation such as that described here might contribute to remaining and perhaps abnormal sensibility after nerve injury and is of interest for the interpretation of results in experimental studies of collateral and regenerative sprouting after such injury

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in GDAP1, which encodes protein located in the mitochondrial outer membrane, cause axonal recessive (AR-CMT2), axonal dominant (CMT2K) and demyelinating recessive (CMT4A) forms of Charcot-Marie-Tooth (CMT) neuropathy. Loss of function recessive mutations in GDAP1 are associated with decreased mitochondrial fission activity, while dominant mutations result in impairment of mitochondrial fusion with increased production of reactive oxygen species and susceptibility to apoptotic stimuli. GDAP1 silencing in vitro reduces Ca2+ inflow through store-operated Ca2+ entry (SOCE) upon mobilization of endoplasmic reticulum (ER) Ca2+, likely in association with an abnormal distribution of the mitochondrial network. To investigate the functional consequences of lack of GDAP1 in vivo, we generated a Gdap1 knockout mouse. The affected animals presented abnormal motor behavior starting at the age of 3 months. Electrophysiological and biochemical studies confirmed the axonal nature of the neuropathy whereas histopathological studies over time showed progressive loss of motor neurons (MNs) in the anterior horn of the spinal cord and defects in neuromuscular junctions. Analyses of cultured embryonic MNs and adult dorsal root ganglia neurons from affected animals demonstrated large and defective mitochondria, changes in the ER cisternae, reduced acetylation of cytoskeletal α-tubulin and increased autophagy vesicles. Importantly, MNs showed reduced cytosolic calcium and SOCE response. The development and characterization of the GDAP1 neuropathy mice model thus revealed that some of the pathophysiological changes present in axonal recessive form of the GDAP1-related CMT might be the consequence of changes in the mitochondrial network biology and mitochondria-endoplasmic reticulum interaction leading to abnormalities in calcium homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Acute painful diabetic neuropathy (APDN) is a distinctive diabetic polyneuropathy and consists of two subtypes: treatment-induced neuropathy (TIN) and diabetic neuropathic cachexia (DNC). The characteristics of APDN are (1.) the small-fibre involvement, (2.) occurrence paradoxically after short-term achievement of good glycaemia control, (3.) intense pain sensation and (4.) eventual recovery. In the face of current recommendations to achieve quickly glycaemic targets, it appears necessary to recognise and understand this neuropathy. METHODS AND RESULTS: Over 2009 to 2012, we reported four cases of APDN. Four patients (three males and one female) were identified and had a mean age at onset of TIN of 47.7 years (±6.99 years). Mean baseline HbA1c was 14.2% (±1.42) and 7.0% (±3.60) after treatment. Mean estimated time to correct HbA1c was 4.5 months (±3.82 months). Three patients presented with a mean time to symptom resolution of 12.7 months (±1.15 months). One patient had an initial normal electroneuromyogram (ENMG) despite the presence of neuropathic symptoms, and a second abnormal ENMG showing axonal and myelin neuropathy. One patient had a peroneal nerve biopsy showing loss of large myelinated fibres as well as unmyelinated fibres, and signs of microangiopathy. CONCLUSIONS: According to the current recommendations of promptly achieving glycaemic targets, it appears necessary to recognise and understand this neuropathy. Based on our observations and data from the literature we propose an algorithmic approach for differential diagnosis and therapeutic management of APDN patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the effect of anterior ischemic optic neuropathy (AION) on the activity of intrinsically photosensitive retinal ganglion cells (ipRGCs) using the pupil as proxy. Eighteen patients with AION (10 unilateral, 8 bilateral) and 29 age-matched control subjects underwent chromatic pupillometry. Red and blue light stimuli increasing in 0.5 log steps were presented to each eye independently under conditions of dark and light adaptation. The recorded pupil contraction was plotted against stimulus intensity to generate scotopic and photopic response curves for assessment of synaptically-mediated ipRGC activity. Bright blue light stimuli presented monocularly and binocularly were used for melanopsin activation. The post-stimulus pupil size (PSPS) at the 6th second following stimulus offset was the marker of intrinsic ipRGC activity. Finally, questionnaires were administered to assess the influence of ipRGCs on sleep. The pupil response and PSPS to all monocularly-presented light stimuli were impaired in AION eyes, indicating ipRGC dysfunction. To binocular light stimulation, the PSPS of AION patients was similar to that of controls. There was no difference in the sleep habits of the two groups. Thus after ischemic injury to one or both optic nerves, the summated intrinsic ipRGC activity is preserved when both eyes receive adequate light exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topographical distribution of sciatic and femoral nerve sensory neuronal somata in the L4 dorsal root ganglion of the adult rat was mapped after retrograde tracing with one or two of the dyes Fast Blue, Fluoro-Gold, or Diamidino Yellow. The tracers were applied to the proximal transected end of either nerve alone, or from both nerves in the same animal using separate tracers. Three-dimensional reconstructions of the distribution of labelled neurones were made from serial sections of the L4 dorsal root ganglion which is the only ganglion that these two nerves share. The results showed that with little overlap, femoral nerve neurones distribute dorsally and rostrally whereas sciatic nerve neurones distribute medially and ventrally. This finding indicates the existence of a somatotopical organisation for the representation of different peripheral nerves in dorsal root ganglia of adult animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Studies suggest that smoking may be a risk factor for the development of microvascular complications such as diabetic peripheral neuropathy (DPN). The objective of this study was to assess the relationship between smoking and DPN in persons with type 1 or type 2 diabetes. RESEARCH DESIGN AND METHODS: A systematic review of the PubMed, Embase, and Cochrane clinical trials databases was conducted for the period from January 1966 to November 2014 for cohort, cross-sectional and case-control studies that assessed the relationship between smoking and DPN. Separate meta-analyses for prospective cohort studies and case-control or cross-sectional studies were performed using random effects models. RESULTS: Thirty-eight studies (10 prospective cohort and 28 cross-sectional) were included. The prospective cohort studies included 5558 participants without DPN at baseline. During follow-up ranging from 2 to 10 years, 1550 cases of DPN occurred. The pooled unadjusted odds ratio (OR) of developing DPN associated with smoking was 1.26 (95% CI 0.86-1.85; I(2) = 74%; evidence grade: low strength). Stratified analyses of the prospective studies revealed that studies of higher quality and with better levels of adjustment and longer follow-up showed a significant positive association between smoking and DPN, with less heterogeneity. The cross-sectional studies included 27,594 participants. The pooled OR of DPN associated with smoking was 1.42 (95% CI 1.21-1.65; I(2) = 65%; evidence grade: low strength). There was no evidence of publication bias. CONCLUSIONS: Smoking may be associated with an increased risk of DPN in persons with diabetes. Further studies are needed to test whether this association is causal and whether smoking cessation reduces the risk of DPN in adults with diabetes.