995 resultados para scheduling sequence
Resumo:
The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.
Resumo:
Rare earth element geochemistry in carbonate rocks is utilized increasingly for studying both modern oceans and palaeoceanography, with additional applications for investigating water–rock interactions in groundwater and carbonate diagenesis. However, the study of rare earth element geochemistry in ancient rocks requires the preservation of their distribution patterns through subsequent diagenesis. The subjects of this study, Pleistocene scleractinian coral skeletons from Windley Key, Florida, have undergone partial to complete neomorphism from aragonite to calcite in a meteoric setting; they allow direct comparison of rare earth element distributions in original coral skeleton and in neomorphic calcite. Neomorphism occurred in a vadose setting along a thin film, with degradation of organic matter playing an initial role in controlling the morphology of the diagenetic front. As expected, minor element concentrations vary significantly between skeletal aragonite and neomorphic calcite, with Sr, Ba and U decreasing in concentration and Mn increasing in concentration in the calcite, suggesting that neomorphism took place in an open system. However, rare earth elements were largely retained during neomorphism, with precipitating cements taking up excess rare earth elements released from dissolved carbonates from higher in the karst system. Preserved rare earth element patterns in the stabilized calcite closely reflect the original rare earth element patterns of the corals and associated reef carbonates. However, minor increases in light rare earth element depletion and negative Ce anomalies may reflect shallow oxidized groundwater processes, whereas decreasing light rare earth element depletion may reflect mixing of rare earth elements from associated microbialites or contamination from insoluble residues. Regardless of these minor disturbances, the results indicate that rare earth elements, unlike many minor elements, behave very conservatively during meteoric diagenesis. As the meteoric transformation of aragonite to calcite is a near worst case scenario for survival of original marine trace element distributions, this study suggests that original rare earth element patterns may commonly be preserved in ancient limestones, thus providing support for the use of ancient marine limestones as proxies for marine rare earth element geochemistry.
Resumo:
This paper presents a group maintenance scheduling case study for a water distributed network. This water pipeline network presents the challenge of maintaining aging pipelines with the associated increases in annual maintenance costs. The case study focuses on developing an effective maintenance plan for the water utility. Current replacement planning is difficult as it needs to balance the replacement needs under limited budgets. A Maintenance Grouping Optimization (MGO) model based on a modified genetic algorithm was utilized to develop an optimum group maintenance schedule over a 20-year cycle. The adjacent geographical distribution of pipelines was used as a grouping criterion to control the searching space of the MGO model through a Judgment Matrix. Based on the optimum group maintenance schedule, the total cost was effectively reduced compared with the schedules without grouping maintenance jobs. This optimum result can be used as a guidance to optimize the current maintenance plan for the water utility.
Massively parallel sequencing and analysis of expressed sequence tags in a successful invasive plant
Resumo:
Background Invasive species pose a significant threat to global economies, agriculture and biodiversity. Despite progress towards understanding the ecological factors associated with plant invasions, limited genomic resources have made it difficult to elucidate the evolutionary and genetic factors responsible for invasiveness. This study presents the first expressed sequence tag (EST) collection for Senecio madagascariensis, a globally invasive plant species. Methods We used pyrosequencing of one normalized and two subtractive libraries, derived from one native and one invasive population, to generate an EST collection. ESTs were assembled into contigs, annotated by BLAST comparison with the NCBI non-redundant protein database and assigned gene ontology (GO) terms from the Plant GO Slim ontologies. Key Results Assembly of the 221 746 sequence reads resulted in 12 442 contigs. Over 50 % (6183) of 12 442 contigs showed significant homology to proteins in the NCBI database, representing approx. 4800 independent transcripts. The molecular transducer GO term was significantly over-represented in the native (South African) subtractive library compared with the invasive (Australian) library. Based on NCBI BLAST hits and literature searches, 40 % of the molecular transducer genes identified in the South African subtractive library are likely to be involved in response to biotic stimuli, such as fungal, bacterial and viral pathogens. Conclusions This EST collection is the first representation of the S. madagascariensis transcriptome and provides an important resource for the discovery of candidate genes associated with plant invasiveness. The over-representation of molecular transducer genes associated with defence responses in the native subtractive library provides preliminary support for aspects of the enemy release and evolution of increased competitive ability hypotheses in this successful invasive. This study highlights the contribution of next-generation sequencing to better understanding the molecular mechanisms underlying ecological hypotheses that are important in successful plant invasions.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountainbiking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.
Resumo:
Computer resource allocation represents a significant challenge particularly for multiprocessor systems, which consist of shared computing resources to be allocated among co-runner processes and threads. While an efficient resource allocation would result in a highly efficient and stable overall multiprocessor system and individual thread performance, ineffective poor resource allocation causes significant performance bottlenecks even for the system with high computing resources. This thesis proposes a cache aware adaptive closed loop scheduling framework as an efficient resource allocation strategy for the highly dynamic resource management problem, which requires instant estimation of highly uncertain and unpredictable resource patterns. Many different approaches to this highly dynamic resource allocation problem have been developed but neither the dynamic nature nor the time-varying and uncertain characteristics of the resource allocation problem is well considered. These approaches facilitate either static and dynamic optimization methods or advanced scheduling algorithms such as the Proportional Fair (PFair) scheduling algorithm. Some of these approaches, which consider the dynamic nature of multiprocessor systems, apply only a basic closed loop system; hence, they fail to take the time-varying and uncertainty of the system into account. Therefore, further research into the multiprocessor resource allocation is required. Our closed loop cache aware adaptive scheduling framework takes the resource availability and the resource usage patterns into account by measuring time-varying factors such as cache miss counts, stalls and instruction counts. More specifically, the cache usage pattern of the thread is identified using QR recursive least square algorithm (RLS) and cache miss count time series statistics. For the identified cache resource dynamics, our closed loop cache aware adaptive scheduling framework enforces instruction fairness for the threads. Fairness in the context of our research project is defined as a resource allocation equity, which reduces corunner thread dependence in a shared resource environment. In this way, instruction count degradation due to shared cache resource conflicts is overcome. In this respect, our closed loop cache aware adaptive scheduling framework contributes to the research field in two major and three minor aspects. The two major contributions lead to the cache aware scheduling system. The first major contribution is the development of the execution fairness algorithm, which degrades the co-runner cache impact on the thread performance. The second contribution is the development of relevant mathematical models, such as thread execution pattern and cache access pattern models, which in fact formulate the execution fairness algorithm in terms of mathematical quantities. Following the development of the cache aware scheduling system, our adaptive self-tuning control framework is constructed to add an adaptive closed loop aspect to the cache aware scheduling system. This control framework in fact consists of two main components: the parameter estimator, and the controller design module. The first minor contribution is the development of the parameter estimators; the QR Recursive Least Square(RLS) algorithm is applied into our closed loop cache aware adaptive scheduling framework to estimate highly uncertain and time-varying cache resource patterns of threads. The second minor contribution is the designing of a controller design module; the algebraic controller design algorithm, Pole Placement, is utilized to design the relevant controller, which is able to provide desired timevarying control action. The adaptive self-tuning control framework and cache aware scheduling system in fact constitute our final framework, closed loop cache aware adaptive scheduling framework. The third minor contribution is to validate this cache aware adaptive closed loop scheduling framework efficiency in overwhelming the co-runner cache dependency. The timeseries statistical counters are developed for M-Sim Multi-Core Simulator; and the theoretical findings and mathematical formulations are applied as MATLAB m-file software codes. In this way, the overall framework is tested and experiment outcomes are analyzed. According to our experiment outcomes, it is concluded that our closed loop cache aware adaptive scheduling framework successfully drives co-runner cache dependent thread instruction count to co-runner independent instruction count with an error margin up to 25% in case cache is highly utilized. In addition, thread cache access pattern is also estimated with 75% accuracy.
Resumo:
The paper investigates train scheduling problems when prioritised trains and non-prioritised trains are simultaneously traversed in a single-line rail network. In this case, no-wait conditions arise because the prioritised trains such as express passenger trains should traverse continuously without any interruption. In comparison, non-prioritised trains such as freight trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available, which is thought of as a relaxation of no-wait conditions. With thorough analysis of the structural properties of the No-Wait Blocking Parallel-Machine Job-Shop-Scheduling (NWBPMJSS) problem that is originated in this research, an innovative generic constructive algorithm (called NWBPMJSS_Liu-Kozan) is proposed to construct the feasible train timetable in terms of a given order of trains. In particular, the proposed NWBPMJSS_Liu-Kozan constructive algorithm comprises several recursively-used sub-algorithms (i.e. Best-Starting-Time-Determination Procedure, Blocking-Time-Determination Procedure, Conflict-Checking Procedure, Conflict-Eliminating Procedure, Tune-up Procedure and Fine-tune Procedure) to guarantee feasibility by satisfying the blocking, no-wait, deadlock-free and conflict-free constraints. A two-stage hybrid heuristic algorithm (NWBPMJSS_Liu-Kozan-BIH) is developed by combining the NWBPMJSS_Liu-Kozan constructive algorithm and the Best-Insertion-Heuristic (BIH) algorithm to find the preferable train schedule in an efficient and economical way. Extensive computational experiments show that the proposed methodology is promising because it can be applied as a standard and fundamental toolbox for identifying, analysing, modelling and solving real-world scheduling problems.
Resumo:
In this paper, No-Wait, No-Buffer, Limited-Buffer, and Infinite-Buffer conditions for the flow-shop problem (FSP) have been investigated. These four different buffer conditions have been combined to generate a new class of scheduling problem, which is significant for modelling many real-world scheduling problems. A new heuristic algorithm is developed to solve this strongly NP-hard problem. Detailed numerical implementations have been analysed and promising results have been achieved.