575 resultados para scatter hoarding
Resumo:
Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.
Resumo:
Purpose This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs, and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 mm to 100 mm, using a nominal photon energy of 6 MV. Results According to the practical definition established in this project, field sizes < 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0 % to 2.0 %, or field size uncertainties are 0.5 mm, field sizes < 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes < 12 mm. Source occlusion also caused a large change in OPF for field sizes < 8 mm. Based on the results of this study, field sizes < 12 mm were considered to be theoretically very small for 6 MV beams. Conclusions Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least < 12 mm and more conservatively < 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.
Resumo:
A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.
Resumo:
The wind field of an intense idealised downburst wind storm has been studied using an axisymmetric, dry, non-hydrostatic numerical sub-cloud model. The downburst driving processes of evaporation and melting have been paramaterized by an imposed cooling source that triggers and sustains a downdraft. The simulated downburst exhibits many characteristics of observed full-scale downburst events, in particular the presence of a primary and counter rotating secondary ring vortex at the leading edge of the diverging front. The counter-rotating vortex is shown to significantly influence the development and structure of the outflow. Numerical forcing and environmental characteristics have been systematically varied to determine the influence on the outflow wind field. Normalised wind structure at the time of peak outflow intensity was generally shown to remain constant for all simulations. Enveloped velocity profiles considering the velocity structure throughout the entire storm event show much more scatter. Assessing the available kinetic energy within each simulated storm event, it is shown that the simulated downburst wind events had significantly less energy available for loading isolated structures when compared with atmospheric boundary layer winds. The discrepancy is shown to be particularly prevalent when wind speeds were integrated over heights representative of tall buildings. A similar analysis for available full scale measurements led to similar findings.
Resumo:
Introduction The consistency of measuring small field output factors is greatly increased by reporting the measured dosimetric field size of each factor, as opposed to simply stating the nominal field size [1] and therefore requires the measurement of cross-axis profiles in a water tank. However, this makes output factor measurements time consuming. This project establishes at which field size the accuracy of output factors are not affected by the use of potentially inaccurate nominal field sizes, which we believe establishes a practical working definition of a ‘small’ field. The physical components of the radiation beam that contribute to the rapid change in output factor at small field sizes are examined in detail. The physical interaction that dominates the cause of the rapid dose reduction is quantified, and leads to the establishment of a theoretical definition of a ‘small’ field. Methods Current recommendations suggest that radiation collimation systems and isocentre defining lasers should both be calibrated to permit a maximum positioning uncertainty of 1 mm [2]. The proposed practical definition for small field sizes is as follows: if the output factor changes by ±1.0 % given a change in either field size or detector position of up to ±1 mm then the field should be considered small. Monte Carlo modelling was used to simulate output factors of a 6 MV photon beam for square fields with side lengths from 4.0 to 20.0 mm in 1.0 mm increments. The dose was scored to a 0.5 mm wide and 2.0 mm deep cylindrical volume of water within a cubic water phantom, at a depth of 5 cm and SSD of 95 cm. The maximum difference due to a collimator error of ±1 mm was found by comparing the output factors of adjacent field sizes. The output factor simulations were repeated 1 mm off-axis to quantify the effect of detector misalignment. Further simulations separated the total output factor into collimator scatter factor and phantom scatter factor. The collimator scatter factor was further separated into primary source occlusion effects and ‘traditional’ effects (a combination of flattening filter and jaw scatter etc.). The phantom scatter was separated in photon scatter and electronic disequilibrium. Each of these factors was plotted as a function of field size in order to quantify how each affected the change in small field size. Results The use of our practical definition resulted in field sizes of 15 mm or less being characterised as ‘small’. The change in field size had a greater effect than that of detector misalignment. For field sizes of 12 mm or less, electronic disequilibrium was found to cause the largest change in dose to the central axis (d = 5 cm). Source occlusion also caused a large change in output factor for field sizes less than 8 mm. Discussion and conclusions The measurement of cross-axis profiles are only required for output factor measurements for field sizes of 15 mm or less (for a 6 MV beam on Varian iX linear accelerator). This is expected to be dependent on linear accelerator spot size and photon energy. While some electronic disequilibrium was shown to occur at field sizes as large as 30 mm (the ‘traditional’ definition of small field [3]), it has been shown that it does not cause a greater change than photon scatter until a field size of 12 mm, at which point it becomes by far the most dominant effect.
Resumo:
Introduction Total scatter factor (or output factor) in megavoltage photon dosimetry is a measure of relative dose relating a certain field size to a reference field size. The use of solid phantoms has been well established for output factor measurements, however to date these phantoms have not been tested with small fields. In this work, we evaluate the water equivalency of a number of solid phantoms for small field output factor measurements using the EGSnrc Monte Carlo code. Methods The following small square field sizes were simulated using BEAMnrc: 5, 6, 7, 8, 10 and 30 mm. Each simulated phantom geometry was created in DOSXYZnrc and consisted of a silicon diode (of length and width 1.5 mm and depth 0.5 mm) submersed in the phantom at a depth of 5 g/cm2. The source-to-detector distance was 100 cm for all simulations. The dose was scored in a single voxel at the location of the diode. Interaction probabilities and radiation transport parameters for each material were created using custom PEGS4 files. Results A comparison of the resultant output factors in the solid phantoms, compared to the same factors in a water phantom are shown in Fig. 1. The statistical uncertainty in each point was less than or equal to 0.4 %. The results in Fig. 1 show that the density of the phantoms affected the output factor results, with higher density materials (such as PMMA) resulting in higher output factors. Additionally, it was also calculated that scaling the depth for equivalent path length had negligible effect on the output factor results at these field sizes. Discussion and conclusions Electron stopping power and photon mass energy absorption change minimally with small field size [1]. Also, it can be seen from Fig. 1 that the difference from water decreases with increasing field size. Therefore, the most likely cause for the observed discrepancies in output factors is differing electron disequilibrium as a function of phantom density. When measuring small field output factors in a solid phantom, it is important that the density is very close to that of water.
Resumo:
Hepatocyte growth factor/scatter factor (HGF/SF) is a protein growth factor whose pleiotropic effects on epithelial cells include the stimulation of motility, mitosis and tubulogenesis. These responses are mediated by the cell surface tyrosine kinase receptor c-met. Because both the cytokine and receptor are found in the gastrointestinal tract, we have studied the effects of HGF/SF on transformed gut epithelial cells which express c-met. Here we describe the response of a new transformed human jejunal epithelioid cell line (HIE-7) to HGF/SF. Morphologically HIE-7 cells are immature. Their epithelial lineage was confirmed by reactivity with the epithelial specific antibodies AE1/AE3, Cam 5.2, Ber-EP4 and anti-EMA and is consistent with their expression of c-met mRNA and protein. In addition, electron microscopic analysis revealed the presence of primitive junctions and rudimentary microvilli, but features of polarization were absent. When grown on reconstituted basement membranes, HIE-7 cells formed closely associated multicellular cord-like structures adjacent to acellular spaces. However, the cells did not mature structurally, form lumen-like structures or express disaccharidase mRNA, even in the presence of recombinant HGF (rHGF). On the other hand, rHGF induced HIE-7 cells to scatter and stimulated their rapid migration in a modified wound assay. To determine whether the motogenic effect caused by rHGF is associated with HIE-7 cell invasiveness across reconstituted basement membranes, a Boyden chamber chemoinvasion assay was performed. rHGF stimulated a 10-fold increase in the number of HIE-7 cells that crossed the basement membrane barrier, while only stimulating a small increase in chemotaxis across a collagen IV matrix, suggesting that the cytokine activates matrix penetration by these cells. rHGF also stimulated the invasion of basement membranes by an undifferentiated rat intestinal cell line (IEC-6) and by two human colon cancer cell lines which are poorly differentiated (DLD-1 and SW 948). In contrast, two moderately well differentiated colon cancer cell lines (Caco-2 and HT-29) did not manifest an invasive response when exposed to rHGF. These results suggest that HGF/SF may play a significant role in the invasive behavior of anaplastic and poorly differentiated gut epithelial tumors.
Resumo:
The Syrian hamster, Mesocricetus auratus, was first used in laboratory experiments some fifty years ago in the Middle East, from animals captured in the wild. 1 Since then the Syrian hamster has been domesticated and used extensively in laboratory studies of motivation, includuing reproduction, feeding, aggression and circadian behaviors. 2 In comparison to the rat, the male Syrian hamster is a solitary animal known for its territorial aggression, photoperiodic mating and hoarding behaviors. Many neural circuits controlling reproductive behaviors are now known. 3 While these motivated behaviors have been demonstrated to be regulated by endocrine status there is increasing evidence that dopamine within the nucleus accumbens conveys the rewarding tone of sexual motivation
Resumo:
Protocols for bioassessment often relate changes in summary metrics that describe aspects of biotic assemblage structure and function to environmental stress. Biotic assessment using multimetric indices now forms the basis for setting regulatory standards for stream quality and a range of other goals related to water resource management in the USA and elsewhere. Biotic metrics are typically interpreted with reference to the expected natural state to evaluate whether a site is degraded. It is critical that natural variation in biotic metrics along environmental gradients is adequately accounted for, in order to quantify human disturbance-induced change. A common approach used in the IBI is to examine scatter plots of variation in a given metric along a single stream size surrogate and a fit a line (drawn by eye) to form the upper bound, and hence define the maximum likely value of a given metric in a site of a given environmental characteristic (termed the 'maximum species richness line' - MSRL). In this paper we examine whether the use of a single environmental descriptor and the MSRL is appropriate for defining the reference condition for a biotic metric (fish species richness) and for detecting human disturbance gradients in rivers of south-eastern Queensland, Australia. We compare the accuracy and precision of the MSRL approach based on single environmental predictors, with three regression-based prediction methods (Simple Linear Regression, Generalised Linear Modelling and Regression Tree modelling) that use (either singly or in combination) a set of landscape and local scale environmental variables as predictors of species richness. We compared the frequency of classification errors from each method against set biocriteria and contrast the ability of each method to accurately reflect human disturbance gradients at a large set of test sites. The results of this study suggest that the MSRL based upon variation in a single environmental descriptor could not accurately predict species richness at minimally disturbed sites when compared with SLR's based on equivalent environmental variables. Regression-based modelling incorporating multiple environmental variables as predictors more accurately explained natural variation in species richness than did simple models using single environmental predictors. Prediction error arising from the MSRL was substantially higher than for the regression methods and led to an increased frequency of Type I errors (incorrectly classing a site as disturbed). We suggest that problems with the MSRL arise from the inherent scoring procedure used and that it is limited to predicting variation in the dependent variable along a single environmental gradient.
Resumo:
This is an update of an earlier paper, and is written for Excel 2007. A series of Excel 2007 models is described. The more advanced versions allow solution of f(x)=0 by examining change of sign of function values. The function is graphed and change of sign easily detected by a change of colour. Relevant features of Excel 2007 used are Names, Scatter Chart and Conditional Formatting. Several sample Excel 2007 models are available for download, and the paper is intended to be used as a lesson plan for students having some familiarity with derivatives. For comparison and reference purposes, the paper also presents a brief outline of several common equation-solving strategies as an Appendix.
Resumo:
The macroscopic fundamental diagram (MFD) traffic modelling method has been proved for large urban roads and freeway networks, but hysteresis and scatter have been found in both such networks. This paper investigates how incident variables affect the shape and scatter of the MFD using both simulated data and real data collected from the M3 Pacific motorway in Brisbane, Australia. Three key components of incidents are investigated based on the simulated data (i.e. incident location, incident duration and traffic demand). The results based on simulated data indicate that the diagram shape is a property not only of the network itself but also of the incident variables. Diagrams for three types of real incidents (crash, hazard and vehicle breakdown) are explored separately. The results based on the empirical data are consistent with the simulated results. The hysteresis phenomenon occurs both upstream and downstream of the incident location, but for opposite hysteresis loops. The gradient of the upstream diagram is greater than that downstream on the incident site, when traffic demand is for an off-peak period.
Resumo:
This study compared optics of eyes in people with diabetes with those age-balanced controls. Relative to the control group, the diabetes group demonstrated greater lens thickness, more curved lens shapes, smaller lens diameters, higher light scatter, greater lens yellowing, and poorer focusing ability. While the optics of the people with diabetes made them appear as older eyes than those of people of the same age without diabetes, the differences did not increase significantly with age. It was concluded that age-related changes in eyes of people with diabetes need not be accelerated if the diabetes is well controlled.
Resumo:
There have been substantial advances in small field dosimetry techniques and technologies, over the last decade, which have dramatically improved the achievable accuracy of small field dose measurements. This educational note aims to help radiation oncology medical physicists to apply some of these advances in clinical practice. The evaluation of a set of small field output factors (total scatter factors) is used to exemplify a detailed measurement and simulation procedure and as a basis for discussing the possible effects of simplifying that procedure. Field output factors were measured with an unshielded diode and a micro-ionisation chamber, at the centre of a set of square fields defined by a micro-multileaf collimator. Nominal field sizes investigated ranged from 6×6 to 98×98 mm2. Diode measurements in fields smaller than 30 mm across were corrected using response factors calculated using Monte Carlo simulations of the full diode geometry and daisy-chained to match micro-chamber measurements at intermediate field sizes. Diode measurements in fields smaller than 15 mm across were repeated twelve times over three separate measurement sessions, to evaluate the to evaluate the reproducibility of the radiation field size and its correspondence with the nominal field size. The five readings that contributed to each measurement on each day varied by up to 0.26%, for the “very small” fields smaller than 15 mm, and 0.18% for the fields larger than 15 mm. The diode response factors calculated for the unshielded diode agreed with previously published results, within 1.6%. The measured dimensions of the very small fields differed by up to 0.3 mm, across the different measurement sessions, contributing an uncertainty of up to 1.2% to the very small field output factors. The overall uncertainties in the field output factors were 1.8% for the very small fields and 1.1% for the fields larger than 15 mm across. Recommended steps for acquiring small field output factor measurements for use in radiotherapy treatment planning system beam configuration data are provided.
An external field prior for the hidden Potts model with application to cone-beam computed tomography
Resumo:
In images with low contrast-to-noise ratio (CNR), the information gain from the observed pixel values can be insufficient to distinguish foreground objects. A Bayesian approach to this problem is to incorporate prior information about the objects into a statistical model. A method for representing spatial prior information as an external field in a hidden Potts model is introduced. This prior distribution over the latent pixel labels is a mixture of Gaussian fields, centred on the positions of the objects at a previous point in time. It is particularly applicable in longitudinal imaging studies, where the manual segmentation of one image can be used as a prior for automatic segmentation of subsequent images. The method is demonstrated by application to cone-beam computed tomography (CT), an imaging modality that exhibits distortions in pixel values due to X-ray scatter. The external field prior results in a substantial improvement in segmentation accuracy, reducing the mean pixel misclassification rate for an electron density phantom from 87% to 6%. The method is also applied to radiotherapy patient data, demonstrating how to derive the external field prior in a clinical context.
Resumo:
The matrix of volcaniclastic kimberlite (VK) from the Muskox pipe (Northern Slave Province, Nunavut, Canada) is interpreted to represent an overprint of an original clastic matrix. Muskox VK is subdivided into three different matrix mineral assemblages that reflect differences in the proportions of original primary matrix constituents, temperature of formation and nature of the altering fluids. Using whole rock X-ray fluorescence (XRF), whole rock X-ray diffraction (XRD), microprobe analyses, back-scatter electron (BSE) imaging, petrography and core logging, we find that most matrix minerals (serpentine, phlogopite, chlorite, saponite, monticellite, Fe-Ti oxides and calcite) lack either primary igneous or primary clastic textures. The mineralogy and textures are most consistent with formation through alteration overprinting of an original clastic matrix that form by retrograde reactions as the deposit cools, or, in the case of calcite, by precipitation from Ca-bearing fluids into a secondary porosity. The first mineral assemblage consists largely of serpentine, phlogopite, calcite, Fe-Ti oxides and monticellite and occurs in VK with relatively fresh framework clasts. Alteration reactions, driven by deuteric fluids derived from the juvenile constituents, promote the crystallisation of minerals that indicate relatively high temperatures of formation (> 400 °C). Lower-temperature minerals are not present because permeability was occluded before the deposit cooled to low temperatures, thus shielding the facies from further interaction with fluids. The other two matrix mineral assemblages consist largely of serpentine, phlogopite, calcite, +/- diopside, and +/- chlorite. They form in VK that contains more country rock, which may have caused the deposit to be cooler upon emplacement. Most framework components are completely altered, suggesting that larger volumes of fluids drove the alteration reactions. These fluids were likely of meteoric provenance and became heated by the volcaniclastic debris when they percolated into the VK infill. Most alteration reactions ceased at temperatures > 200 °C, as indicated by the absence or paucity of lower-temperature phases in most samples, such as saponite. Recognition that Muskox VK contains an original clastic matrix is a necessary first step for evaluating the textural configuration, which is important for reconstructing the physical processes responsible for the formation of the deposit.