990 resultados para saline acide
Resumo:
A perusal of the literature shows that most of the earlier works on the ecology and productivity from the Indian waters have been confined to the estuarine ecosystms and contiguous neritic and oceanic water bodies. Although some information is available on certain aspects of the envirornental parameters from the ‘coastal lagoon ecosystem‘, there is hardly any indepth study on the ecological and productivity problems from "derlict saline lagoonal environment" in India . In view of this, the researcher undertook a study on the subject "ecology and productivity“ of a typical “coastal saline lagoon"(Pilla;headan lagoon) situated along the southeast coast of India for a period of two years!-N11, 1982 to June, 1984) , and the results of the investigations are embodied in the present thesis entitled "studies on the ecology and productivity of saline lagoon‘.
Resumo:
Two distinct nitrifying bacterial consortia, namely an ammonia oxidizing non-penaeid culture (AMO NPCU-1) and an ammonia oxidizing penaeid culture (AMOPCU-1), have been mass produced in a nitrifying bacterial consortia production unit (NBCPU). The consortia, maintained at 4 C were activated and cultured in a 2 l fermentor initially. At this stage the net biomass (0.105 and 0.112 g/l), maximum specific growth rate (0.112 and 0.105/h) and yield coefficients (1.315 and 2.08) were calculated respectively, for AMONPCU-1 and AMOPCU-1 on attaining stationary growth phase. Subsequently on mass production in a 200 l NBCPU under optimized culture conditions, the total amounts of NH4 ?–N removed by AMONPCU-1 and AMOPCU-1 were 1.948 and 1.242 g/l within 160 and 270 days, respectively. Total alkalinity reduction of 11.7–14.4 and 7.5–9.1 g/l were observed which led to the consumption of 78 and 62 g Na2CO3. The yield coefficient and biomass of AMONPCU-1 were 0.67 and 125.3 g/l and those of AMOPCU-1 were 1.23 and 165 g/l. The higher yield coefficient and growth rate of AMOPCU-1 suggest better energy conversion efficiency and higher CO2 fixation potential. Both of the consortia were dominated by Nitrosomonas-like organisms. The consortia may find application in the establishment of nitrification within marine and brackish water culture systems.
Resumo:
This thesis consists of 4 main parts: (1) impact of growing maize on the decomposition of incorporated fresh alfalfa residues, (2) relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab, (3) decomposition of compost and plant residues in Pakistani soils along a gradient in salinity, and (4) interactions of compost and triple superphosphate on the growth of maize in a saline Pakistani soil. These 4 chapters are framed by a General Introduction and a Conclusions section. (1) In the first study, the effects of growing maize plants on the microbial decomposition of freshly chopped alfalfa residues was investigated in a 90-day pot experiment using a sandy arable soil. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 27% of the alfalfa residues were found as CO2. This suggests that a considerable part of alfalfa-C remained undecomposed in the soil. However, only 6% of the alfalfa residues could be recovered as plant remains in treatment with solely alfalfa residues. Based on d13C values, it was calculated that plant remains in treatment maize + alfalfa residues contained 14.7% alfalfa residues and 85.3% maize root remains. This means 60% more alfalfa-C was recovered in this treatment. (2) In the second study, the interactions between soil physical, soil chemical and soil biological properties were analysed in 30 Pakistani soils from alkaline and saline arable sites differing strongly in salinisation and in soil pH. The soil biological properties were differentiated into indices for microbial activity, microbial biomass, and community structure with the aim of assessing their potential as soil fertility indices. (3) In the third study, 3 organic amendments (compost, maize straw and pea straw) were added to 5 Pakistani soils from a gradient in salinity. Although salinity has depressive effects on microbial biomass C, biomass N, biomass P, and ergosterol, the clear gradient according to the soil salt concentration was not reflected by the soil microbial properties. The addition of the 3 organic amendments always increased the contents of the microbial indices analysed. The amendment-induced increase was especially strong for microbial biomass P and reflected the total P content of the added substrates. (4) The fourth study was greenhouse pot experiment with different combinations of compost and triple superphosphate amendments to investigate the interactions between plant growth, microbial biomass formation and compost decomposition in a strongly saline Pakistani arable soil in comparison to a non-saline German arable soil. The Pakistani soil had a 2 times lower content of ergosterol, a 4 times lower contents of microbial biomass C, biomass N and biomass P, but nearly a 20 times lower content of NaHCO3 extractable P. The addition of 1% compost always had positive effects on the microbial properties and also on the content of NaHCO3 extractable P. The addition of superphosphate induced a strong and similar absolute increase in microbial biomass P in both soils.
Resumo:
Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.
Resumo:
The present study explores for the first time, the effectiveness of photocatalytic oxidation of. humic acid (HA) in the increasingly important highly saline water. TiO2 (Degussa P25), TiO2 (Anatase), TiO2 (Rutile), TiO2 (Mesoporous) and ZnO dispersions were used as catalysts employing a medium pressure mercury lamp. The effect of platinum loading on P25 and zinc oxide was also investigated. The zinc oxide with 0.3% platinum loading was the most efficient catalyst. The preferred medium for the degradation of HA using ZnO is alkaline, whereas for TiO2 it is acidic. In addition, a comparative study of HA decomposition in artificial seawater (ASW) and natural seawater (NSW) is reported, and the surface areas and band gaps of the catalysts employed were also determined. A spectrophotometric method was used to estimate the extent of degradation of HA. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We report the first systematic study on the photocatalytic oxidation of humic acid (HA) in artificial seawater (ASW). TiO2 (Degussa P25) dispersions were used as the catalyst with irradiation from a medium-pressure mercury lamp. The optimum quantity of catalyst was found to be between 2 and 2.5 g l(-1); whiled the decomposition was fastest at low pH values (pH 4.5 in the range examined), and the optimum air-flow, using an immersion well reactor with a capacity of 400 ml, was 850 ml min(-1). Reactivity increased with air-flow up to this figure, above which foaming prevented operation of the reactor. Using pure. oxygen, an optimal flow rate was observed at 300 nil min(-1), above which reactivity remains essentially constant. Following treatment for 1 h, low-salinity water (2700 mg l(-1)) was completely mineralised, whereas ASW (46000 mg l(-1)) had traces of HA remaining. These effects are interpreted and kinetic data presented. To avoid problems of precipitation due to change of ionic strength humic substances were prepared directly in ASW, and the effects of ASW on catalyst suspension and precipitation have been taken into account. The Langmuir-Hinshelwood kinetic model has been shown to be followed only approximately for the catalytic oxidation of HA in ASW. The activation energy for the reaction derived from an Arrhenius treatment was 17 ( +/-0.6) kJ mol(-1). (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Sea ice friction models are necessary to predict the nature of interactions between sea ice floes. These interactions are of interest on a range of scales, for example, to predict loads on engineering structures in icy waters or to understand the basin-scale motion of sea ice. Many models use Amonton's friction law due to its simplicity. More advanced models allow for hydrodynamic lubrication and refreezing of asperities; however, modeling these processes leads to greatly increased complexity. In this paper we propose, by analogy with rock physics, that a rate- and state-dependent friction law allows us to incorporate memory (and thus the effects of lubrication and bonding) into ice friction models without a great increase in complexity. We support this proposal with experimental data on both the laboratory (∼0.1 m) and ice tank (∼1 m) scale. These experiments show that the effects of static contact under normal load can be incorporated into a friction model. We find the parameters for a first-order rate and state model to be A = 0.310, B = 0.382, and μ0 = 0.872. Such a model then allows us to make predictions about the nature of memory effects in moving ice-ice contacts.
Resumo:
The photocatalytic degradation of phenol in aqueous suspensions of TiO(2) under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen- Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.
Resumo:
The smaller volemic state from hypertonic (7.5%) saline (HS) solution administration in hemorrhagic shock can determine lesser systemic oxygen delivery and tissue oxygenation than conventional plasma expanders. In a model of hemorrhagic shock in dogs, we studied the systemic and gastrointestinal oxygenation effects of HS and hyperoncotic (6%) dextran-70 in combination with HS (HSD) solutions in comparison with lactated Ringer's (LR) and (6%) hydroxyethyl starch (HES) solutions. Forty-eight mongrel dogs were anesthetized, mechanically ventilated, and subjected to splenectomy. A gastric air tonometer was placed. in the stomach for intramucosal gastric CO2 (Pgco(2)) determination and for the calculation of intramucosal. pH (pHi):[pHi = pHa - log(Pgco(2)/Paco(2))].The dogs were hemorrhaged (42% of blood volume) to hold mean arterial blood pressure at 40-50 mm Hg over 30 min and were then resuscitated with LR (n = 12) in a 3:1 relation to removed blood volume; HS (n = 12), 6 mL / kg; HSD (n = 12), 6 mL / kg; and HES (mean molecular weight, 200 kDa; degree of substitution, 0.5) (n = 12) in a 1:1 relation to the removed blood volume. Hemodynamic, systemic, and gastric oxygenation variables were measured at baseline, after 30 min of hemorrhage, and 5, 60, and 120 min after intravascular fluid resuscitation. After fluid resuscitation, HS showed significantly lower arterial pH and mixed venous Po-2 and higher systemic oxygen uptake index and systemic oxygenation extraction than LR and HES (P < 0.05), whereas HSD showed significantly lower arterial pH than LR and HES (P < 0.05). Only HS and HSD did not return arterial pH and pHi to control levels (P < 0.05). In conclusion, all solutions improved systemic and gastrointestinal oxygenation after hemorrhagic shock in dogs. However, the HS solution showed the worst response in comparison to LR and HES solutions in relation to systemic oxygenation, whereas HSD showed intermediate values. HS and HSD solutions did not return regional oxygenation to control values.
Resumo:
This study compared pressure and thermal thresholds after administration of three opioids in eight cats. Pressure stimulation was performed via a bracelet taped around the forearm. Three ball-bearings were advanced against the forearm by inflation of a modified blood pressure bladder. Pressure in the cuff was recorded at the end point (leg shake and head turn). Thermal threshold was tested as previously reported using a heated probe held against the thorax [Dixon et al. (2002) Research in Veterinary Science, 72, 205]. After baseline recordings, each cat received subcutaneous methadone 0.2 mg/kg, morphine 0.2 mg/kg, buprenorphine 0.02 mg/kg or saline 0.3 mL in a four period cross-over study. Measurements were made at 15, 30, 45 min and 1, 2, 3, 4, 8, 12 and 24 h after the injection. Data were analysed by ANOVA (P < 0.05). There were no significant changes in thresholds after saline. Thermal threshold increased at 45 min after buprenorphine (maximum 2.8 +/- 3 degrees C), 1-3 h after methadone (maximum 3.4 +/- 1.9 degrees C) and 45 min to 1 h (maximum 3.4 +/- 2 degrees C) after morphine. Pressure threshold increased 30-45 min (maximum 238 +/- 206 mmHg) after buprenorphine, 45-60 min after methadone (maximum 255 +/- 232 mmHg) and 45-60 min and 3-6 h (maximum 255 +/- 232 mmHg) after morphine. Morphine provided the best analgesia, and methadone appears a promising alternative. Buprenorphines limited effect was probably related to the subcutaneous route of administration. Previously, buprenorphine has produced much greater effects when given by other routes.
Resumo:
Background. Considering the renal effects of fluid resuscitation in hemorrhaged patients, the choice of fluid has been a source of controversy. In a model of hemorrhagic shock, we studied the early hemodynamic and renal effects of fluid resuscitation with lactated Ringer's (LR), 6% hydroxyethyl starch (HES), and 7.5% hypertonic saline (HS) with or without 6% dextran-70 (HSD).Materials and methods. Forty-eight dogs were anesthetized and submitted to splenectomy. An estimated 40% blood volume was removed to maintain mean arterial pressure (MAP) at 40 mm Hg for 30 min. The dogs were divided into four groups: LR, in a 3:1 ratio to removed blood volume; HS, 6 mL kg(-1); HSD, 6 mL kg(-1); and HES in a 1:1 ratio to removed blood volume. Hemodynamics and renal function were studied during shock and 5, 60, and 120 min after fluid replacement.Results. Shock treatment increased MAP similarly in all groups. At 5 min, cardiac filling pressures and cardiac performance indexes were higher for LR and HES but, after 120 min, there were no differences among groups. Renal blood flow and glomerular filtration rate (GFR) were higher in LR at 60 min but GFR returned to baseline values in all groups at 120 min. Diuresis was higher for LR at 5 min and for LR and HES at 60 min. There were no differences among groups in renal variables 120 min after treatment.Conclusions. Despite the immediate differences in hemodynamic responses, the low-volume resuscitation fluids, HS and HSD, are equally effective to LR and HES in restoring renal performance 120 min after hemorrhagic shock treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)