891 resultados para rule-based logic
Resumo:
Ciao is a logic-based, multi-paradigm programming system. One of its most distinguishing features is that it supports a large number of semantic and syntactic language features which can be selectively activated or deactivated for each program module. As a result, a module can be written in, for example, ISO-Prolog plus constraints and higher order, while another can be a puré logic module with a different control rule such as iterative deepening and/or tabling, and perhaps using constructive negation. A powerful and modular extensión mechanism allows user-level design and implementation of such features and sub-languages. Another distinguishing feature of Ciao is its powerful assertion language, which allows expressing many kinds of program properties (ranging from, e.g., moded types to resource consumption), as well as tests and documentation. The compiler is capable of statically ñnding violations of these properties or verifying that programs comply with them, and issuing certiñcates of this compliance. The compiler also performs many types of optimizations, including automatic parallelization. It offers very competitive performance, while retaining the flexibility and interactive development of a dynamic language. We will present a hands-on overview of the system, through small examples which emphasize the novel aspects and the motivations which lie behind Ciao's design and implementation.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
This paper presents a framework for compositional verification of Object-Z specifications. Its key feature is a proof rule based on decomposition of hierarchical Object-Z models. For each component in the hierarchy local properties are proven in a single proof step. However, we do not consider components in isolation. Instead, components are envisaged in the context of the referencing super-component and proof steps involve assumptions on properties of the sub-components. The framework is defined for Linear Temporal Logic (LTL)
Resumo:
This study explores the institutional logic(s) governing the Corporate Internet Reporting (CIR) by Egyptian listed companies. In doing so, a mixed methods approach was followed. The qualitative part seeks to understand the perceptions, believes, values, norms, that are commonly shared by Egyptian companies which engaged in these practices. Consequently, seven cases of large listed Egyptian companies operating in different industries have been examined. Other stakeholders and stockholders have been interviewed in conjunction with these cases. The quantitative part consists of two studies. The first one is descriptive aiming to specify whether the induced logic(s) from the seven cases are commonly embraced by other Egyptian companies. The second study is explanatory aiming to investigate the impact of several institutional and economic factors on the extent of CIR, types of the online information, quality of the websites as well as the Internet facilities. Drawing on prior CIR literature, four potential types of logics could be inferred: efficiency, legitimacy, technical and marketing based logics. In Egypt, legitimacy logic was initially embraced in the earlier years after the Internet inception. latter, companies confronted radical challenges in their internal and external environments which impelled them to raise their websites potentialities to defend their competitive position; either domestically or internationally. Thus, two new logics emphasizing marketing and technical perspectives have emerged, in response. Strikingly, efficiency based logic is not the most prevalent logic driving CIR practices in Egypt as in the developed countries. The empirical results support this observation and show that almost half of Egyptian listed companies 115 as on December 2010 possessed an active website, half of them 62 disclosed part of their financial and accounting information, during December 2010 to February 2011. Less than half of the websites 52 offered latest annual financial statements. Fewer 33(29%) websites provided shareholders and stock information or included a separate section for corporate governance 25 (22%) compared to 50 (44%) possessing a section for news or press releases. Additionally, the variations in CIR practices, as well as timeliness and credibility were also evident even at industrial level. After controlling for firm size, profitability, leverage, liquidity, competition and growth, it was realized that industrial companies and those facing little competition tend to disclose less. In contrast, management size, foreign investors, foreign listing, dispersion of shareholders and firm size provided significant and positive impact individually or collectively. In contrast, neither audit firm, nor most of performance indicators (i.e. profitability, leverage, and liquidity) did exert an influence on the CIR practices. Thus, it is suggested that CIR practices are loosely institutionalised in Egypt, which necessitates issuing several regulative and processional rules to raise the quality attributes of Egyptian websites, especially, timeliness and credibility. Beside, this study highlights the potency of assessing the impact of institutional logic on CIR practices and suggests paying equal attention to the institutional and economic factors when comparing the CIR practices over time or across different institutional environments in the future.
An improved conflicting evidence combination approach based on a new supporting probability distance
Resumo:
To avoid counter-intuitive result of classical Dempster's combination rule when dealing with highly conflict information, many improved combination methods have been developed through modifying the basic probability assignments (BPAs) of bodies of evidence (BOEs) by using a certain measure of the degree of conflict or uncertain information, such as Jousselme's distance, the pignistic probability distance and the ambiguity measure. However, if BOEs contain some non-singleton elements and the differences among their BPAs are larger than 0.5, the current conflict measure methods have limitations in describing the interrelationship among the conflict BOEs and may even lead to wrong combination results. In order to solve this problem, a new distance function, which is called supporting probability distance, is proposed to characterize the differences among BOEs. With the new distance, the information of how much a focal element is supported by the other focal elements in BOEs can be given. Also, a new combination rule based on the supporting probability distance is proposed for the combination of the conflicting evidences. The credibility and the discounting factor of each BOE are generated by the supporting probability distance and the weighted BOEs are combined directly using Dempster's rules. Analytical results of numerical examples show that the new distance has a better capability of describing the interrelationships among BOEs, especially for the highly conflicting BOEs containing non-singleton elements and the proposed new combination method has better applicability and effectiveness compared with the existing methods.
Resumo:
This dissertation introduces a new system for handwritten text recognition based on an improved neural network design. Most of the existing neural networks treat mean square error function as the standard error function. The system as proposed in this dissertation utilizes the mean quartic error function, where the third and fourth derivatives are non-zero. Consequently, many improvements on the training methods were achieved. The training results are carefully assessed before and after the update. To evaluate the performance of a training system, there are three essential factors to be considered, and they are from high to low importance priority: (1) error rate on testing set, (2) processing time needed to recognize a segmented character and (3) the total training time and subsequently the total testing time. It is observed that bounded training methods accelerate the training process, while semi-third order training methods, next-minimal training methods, and preprocessing operations reduce the error rate on the testing set. Empirical observations suggest that two combinations of training methods are needed for different case character recognition. Since character segmentation is required for word and sentence recognition, this dissertation provides also an effective rule-based segmentation method, which is different from the conventional adaptive segmentation methods. Dictionary-based correction is utilized to correct mistakes resulting from the recognition and segmentation phases. The integration of the segmentation methods with the handwritten character recognition algorithm yielded an accuracy of 92% for lower case characters and 97% for upper case characters. In the testing phase, the database consists of 20,000 handwritten characters, with 10,000 for each case. The testing phase on the recognition 10,000 handwritten characters required 8.5 seconds in processing time.
Resumo:
Current practices in agricultural management involve the application of rules and techniques to ensure high quality and environmentally friendly production. Based on their experience, agricultural technicians and farmers make critical decisions affecting crop growth while considering several interwoven agricultural, technological, environmental, legal and economic factors. In this context, decision support systems and the knowledge models that support them, enable the incorporation of valuable experience into software systems providing support to agricultural technicians to make rapid and effective decisions for efficient crop growth. Pest control is an important issue in agricultural management due to crop yield reductions caused by pests and it involves expert knowledge. This paper presents a formalisation of the pest control problem and the workflow followed by agricultural technicians and farmers in integrated pest management, the crop production strategy that combines different practices for growing healthy crops whilst minimising pesticide use. A generic decision schema for estimating infestation risk of a given pest on a given crop is defined and it acts as a metamodel for the maintenance and extension of the knowledge embedded in a pest management decision support system which is also presented. This software tool has been implemented by integrating a rule-based tool into web-based architecture. Evaluation from validity and usability perspectives concluded that both agricultural technicians and farmers considered it a useful tool in pest control, particularly for training new technicians and inexperienced farmers.
Resumo:
In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The present series of experiments was designed to assess whether rule-based accounts of Pavlovian learning can account for cue competition effects observed after elemental training. All experiments involved initial differential conditioning training with A-US and B alone presentations. Miscuing refers to the fact that responding to A is impaired after one B-US presentation whereas interference is the impairment of responding to A after presentation of C-US pairings. Omission refers to the effects on B of A alone presentations. Experiments 1-2a provided clear evidence for miscuing whereas interference was not found after 1, 5 or 10 C-US pairings. Moreover, Experiments 3 and 3a found only weak evidence for interference in an A-US, B I C-US, D I A design used previously to show the effect. Experiments 4 and 5 failed to find any effect of US omission after one or five omission trials. The present results indicate that miscuing is more robust than is the interference effect. Moreover, the asymmetrical effects of US miscuing and US omission are difficult to accommodate within rule-based accounts of Pavlovian conditioning. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
The relation between patient and physician in most modern Health Care Systems is sparse, limited in time and very inflexible. On the other hand, and in contradiction with several recent studies, most physicians do not rely their patient diagnostics evaluations on intertwined psychological and social nature factors. Facing these problems and trying to improve the patient/physician relation we present a mobile health care solution to improve the interaction between the physician and his patients. The solution serves not only as a privileged mean of communication between physicians and patients but also as an evolutionary intelligent platform delivering a mobile rule based system.
Resumo:
Realization that hard coastal infrastructures support lower biodiversity than natural habitats has prompted a wealth of research seeking to identify design enhancements offering ecological benefits. Some studies showed that artificial structures could be modified to increase levels of diversity. Most studies, however, only considered the short-term ecological effects of such modifications, even though reliance on results from short-term studies may lead to serious misjudgements in conservation. In this study, a sevenyear experiment examined how the addition of small pits to otherwise featureless seawalls may enhance the stocks of a highly-exploited limpet. Modified areas of the seawall supported enhanced stocks of limpets seven years after the addition of pits. Modified areas of the seawall also supported a community that differed in the abundance of littorinids, barnacles andmacroalgae compared to the controls. Responses to different treatments (numbers and size of pits) were speciesspecific and, while some species responded directly to differences among treatments, others might have responded indirectly via changes in the distribution of competing species. This type of habitat enhancement can have positive long-lasting effects on the ecology of urban seascapes.Understanding of species interactions could be used to develop a rule-based approach to enhance biodiversity.