933 resultados para rule mining, closed sequential patterns
Resumo:
Formalizing algorithm derivations is a necessary prerequisite for developing automated algorithm design systems. This report describes a derivation of an algorithm for incrementally matching conjunctive patterns against a growing database. This algorithm, which is modeled on the Rete matcher used in the OPS5 production system, forms a basis for efficiently implementing a rule system. The highlights of this derivation are: (1) a formal specification for the rule system matching problem, (2) derivation of an algorithm for this task using a lattice-theoretic model of conjunctive and disjunctive variable substitutions, and (3) optimization of this algorithm, using finite differencing, for incrementally processing new data.
Resumo:
Els sistemes aquàtics continental representen un dels ecosistemes més amenaçats a nivell mundial, com a conseqüència de l'ús intensiu quel'home en fa. La conca del Guadiana no està lliure d'aquestes pressions antròpiques. Les grans infraestructures hidràuliques i l'escorrentia provinent de l'agricultura són només exemples dels greus problemes que pateix la conca. Aquests problemes es fan especialment palesos en la zona alta de la conca, on l'escassetat d'aigua no fa més que agreujar el problema.Tot això ha generat la necessitat urgent d'avaluar l'estat de conservació d'aquests ecosistemes aquàtics continentals, poder determinar la mesura i la magnitud de les pertorbacions que els estan afectant i així proposar mesures de gestió destinades a restaurar-ne la integritat ecològica. El principal objectiu que presenta aquest és determinar els patrons de distribució de les comunitats de algals (amb una menció especial en el grup de les diatomees) i de les seves causes en la conca del Guadiana i associades, amb la finalitat d'establir i proposar eines que permetin avaluar l'estat de conservació de les masses d'aigua d'aquestes conques.
Resumo:
La investigació que es presenta en aquesta tesi es centra en l'aplicació i millora de metodologies analítiques existents i el desenvolupament de nous procediments que poden ser utilitzats per a l'estudi dels efectes ambientals de la dispersió dels metalls entorn a les zones mineres abandonades. En primer lloc, es van aplicar diferents procediments d'extracció simple i seqüencial per a estudiar la mobilitat, perillositat i bio-disponibilitat dels metalls continguts en residus miners de característiques diferents. Per altra banda, per a estudiar les fonts potencials de Pb en la vegetació de les zones mineres d'estudi, una metodologia basada en la utilització de les relacions isotòpiques de Pb determinades mitjançant ICP-MS va ser avaluada. Finalment, tenint en compte l'elevat nombre de mostres analitzades per a avaluar l'impacte de les activitats mineres, es va considerar apropiat el desenvolupament de mètodes analítics d'elevada productivitat. En aquest sentit la implementació d'estratègies quantitatives així com l'aplicació de les millores instrumentals en els equips de XRF han estat avaluades per a aconseguir resultats analítics fiables en l'anàlisi de plantes. A més, alguns paràmetres de qualitat com la precisió, l'exactitud i els límits de detecció han estat curosament determinats en les diverses configuracions de espectròmetres de XRF utilitzats en el decurs d'aquest treball (EDXRF, WDXRF i EDPXRF) per a establir la capacitat de la tècnica de XRF com a tècnica alternativa a les clàssiques comunament aplicades en la determinació d'elements en mostres vegetals.
Resumo:
In real world applications sequential algorithms of data mining and data exploration are often unsuitable for datasets with enormous size, high-dimensionality and complex data structure. Grid computing promises unprecedented opportunities for unlimited computing and storage resources. In this context there is the necessity to develop high performance distributed data mining algorithms. However, the computational complexity of the problem and the large amount of data to be explored often make the design of large scale applications particularly challenging. In this paper we present the first distributed formulation of a frequent subgraph mining algorithm for discriminative fragments of molecular compounds. Two distributed approaches have been developed and compared on the well known National Cancer Institute’s HIV-screening dataset. We present experimental results on a small-scale computing environment.
Resumo:
Structured data represented in the form of graphs arises in several fields of the science and the growing amount of available data makes distributed graph mining techniques particularly relevant. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. The problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiver-initiated, load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening dataset, where the approach attains close-to linear speedup in a network of workstations.
Resumo:
1. The impact of climate change on phytophages is difficult to predict, due in part to variation between species in their responses to factors such as drought stress. Here, the hypothesis that several species within the leaf-mining feeding guild will respond in a consistent way to changes in rainfall patterns is tested, using a manipulative field experiment. 2. Summer drought, enhanced summer rainfall, and control treatments were imposed on a calcareous grassland community, and the responses of five leaf-mining species were assessed. 3. One leaf-mining species was more abundant under enhanced rainfall, one was more abundant under drought, and the other three species showed no consistent response to the rainfall treatments. Higher parasitism levels under drought may partly explain the response of one species (Stephensia brunnichella) to the treatments. 4. These results show that generalisations relating to drought stress impacts cannot be drawn at the feeding guild level for leaf-mining insects.
The sequential analysis of repeated binary responses: a score test for the case of three time points
Resumo:
In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
Sequential methods provide a formal framework by which clinical trial data can be monitored as they accumulate. The results from interim analyses can be used either to modify the design of the remainder of the trial or to stop the trial as soon as sufficient evidence of either the presence or absence of a treatment effect is available. The circumstances under which the trial will be stopped with a claim of superiority for the experimental treatment, must, however, be determined in advance so as to control the overall type I error rate. One approach to calculating the stopping rule is the group-sequential method. A relatively recent alternative to group-sequential approaches is the adaptive design method. This latter approach provides considerable flexibility in changes to the design of a clinical trial at an interim point. However, a criticism is that the method by which evidence from different parts of the trial is combined means that a final comparison of treatments is not based on a sufficient statistic for the treatment difference, suggesting that the method may lack power. The aim of this paper is to compare two adaptive design approaches with the group-sequential approach. We first compare the form of the stopping boundaries obtained using the different methods. We then focus on a comparison of the power of the different trials when they are designed so as to be as similar as possible. We conclude that all methods acceptably control type I error rate and power when the sample size is modified based on a variance estimate, provided no interim analysis is so small that the asymptotic properties of the test statistic no longer hold. In the latter case, the group-sequential approach is to be preferred. Provided that asymptotic assumptions hold, the adaptive design approaches control the type I error rate even if the sample size is adjusted on the basis of an estimate of the treatment effect, showing that the adaptive designs allow more modifications than the group-sequential method.
Resumo:
Aim: To describe the geographical pattern of mean body size of the non-volant mammals of the Nearctic and Neotropics and evaluate the influence of five environmental variables that are likely to affect body size gradients. Location: The Western Hemisphere. Methods: We calculated mean body size (average log mass) values in 110 × 110 km cells covering the continental Nearctic and Neotropics. We also generated cell averages for mean annual temperature, range in elevation, their interaction, actual evapotranspiration, and the global vegetation index and its coefficient of variation. Associations between mean body size and environmental variables were tested with simple correlations and ordinary least squares multiple regression, complemented with spatial autocorrelation analyses and split-line regression. We evaluated the relative support for each multiple-regression model using AIC. Results: Mean body size increases to the north in the Nearctic and is negatively correlated with temperature. In contrast, across the Neotropics mammals are largest in the tropical and subtropical lowlands and smaller in the Andes, generating a positive correlation with temperature. Finally, body size and temperature are nonlinearly related in both regions, and split-line linear regression found temperature thresholds marking clear shifts in these relationships (Nearctic 10.9 °C; Neotropics 12.6 °C). The increase in body sizes with decreasing temperature is strongest in the northern Nearctic, whereas a decrease in body size in mountains dominates the body size gradients in the warmer parts of both regions. Main conclusions: We confirm previous work finding strong broad-scale Bergmann trends in cold macroclimates but not in warmer areas. For the latter regions (i.e. the southern Nearctic and the Neotropics), our analyses also suggest that both local and broad-scale patterns of mammal body size variation are influenced in part by the strong mesoscale climatic gradients existing in mountainous areas. A likely explanation is that reduced habitat sizes in mountains limit the presence of larger-sized mammals.
Resumo:
In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.
Resumo:
In a world where data is captured on a large scale the major challenge for data mining algorithms is to be able to scale up to large datasets. There are two main approaches to inducing classification rules, one is the divide and conquer approach, also known as the top down induction of decision trees; the other approach is called the separate and conquer approach. A considerable amount of work has been done on scaling up the divide and conquer approach. However, very little work has been conducted on scaling up the separate and conquer approach.In this work we describe a parallel framework that allows the parallelisation of a certain family of separate and conquer algorithms, the Prism family. Parallelisation helps the Prism family of algorithms to harvest additional computer resources in a network of computers in order to make the induction of classification rules scale better on large datasets. Our framework also incorporates a pre-pruning facility for parallel Prism algorithms.
Resumo:
Induction of classification rules is one of the most important technologies in data mining. Most of the work in this field has concentrated on the Top Down Induction of Decision Trees (TDIDT) approach. However, alternative approaches have been developed such as the Prism algorithm for inducing modular rules. Prism often produces qualitatively better rules than TDIDT but suffers from higher computational requirements. We investigate approaches that have been developed to minimize the computational requirements of TDIDT, in order to find analogous approaches that could reduce the computational requirements of Prism.
Resumo:
The fast increase in the size and number of databases demands data mining approaches that are scalable to large amounts of data. This has led to the exploration of parallel computing technologies in order to perform data mining tasks concurrently using several processors. Parallelization seems to be a natural and cost-effective way to scale up data mining technologies. One of the most important of these data mining technologies is the classification of newly recorded data. This paper surveys advances in parallelization in the field of classification rule induction.
Resumo:
In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.
Resumo:
Advances in hardware and software in the past decade allow to capture, record and process fast data streams at a large scale. The research area of data stream mining has emerged as a consequence from these advances in order to cope with the real time analysis of potentially large and changing data streams. Examples of data streams include Google searches, credit card transactions, telemetric data and data of continuous chemical production processes. In some cases the data can be processed in batches by traditional data mining approaches. However, in some applications it is required to analyse the data in real time as soon as it is being captured. Such cases are for example if the data stream is infinite, fast changing, or simply too large in size to be stored. One of the most important data mining techniques on data streams is classification. This involves training the classifier on the data stream in real time and adapting it to concept drifts. Most data stream classifiers are based on decision trees. However, it is well known in the data mining community that there is no single optimal algorithm. An algorithm may work well on one or several datasets but badly on others. This paper introduces eRules, a new rule based adaptive classifier for data streams, based on an evolving set of Rules. eRules induces a set of rules that is constantly evaluated and adapted to changes in the data stream by adding new and removing old rules. It is different from the more popular decision tree based classifiers as it tends to leave data instances rather unclassified than forcing a classification that could be wrong. The ongoing development of eRules aims to improve its accuracy further through dynamic parameter setting which will also address the problem of changing feature domain values.