926 resultados para rotational bands in Ir-176
Resumo:
Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on gamma-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in (270)Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.
Resumo:
High-spin states in Pt-187 were studied via the Yb-173(O-18, 4n) reaction. Rotational bands based on the vi(13/2), v7/2(-)[503], vi(13/2)(2)vj, v3/2(-)[512] and v1/2(-)[521] configurations were observed, and interpreted within the framework of the cranked shell model. The TRS calculations show that the vi(13/2) band has an appreciable negative gamma deformation, and the negative-parity bands tend to have a near prolate shape with small positive gamma values. Experimental values of B(M1)/B(E2) ratios have been extracted and compared with theoretical values from the semi-classical Donau and Frauendof approach, strongly suggesting a low frequency pi h(9/2) alignment in the v7/2(-)[503] band.
Resumo:
Excited states in Tl-188 have been studied experimentally using the Gd-157(Cl-35;4n) reaction at a beam energy of 170 MeV. A rotational band built on the pi h(9/2) x nu i(13/2) configuration with oblate deformation has been established for Tl-188. Based on the structure systematics of the oblate pi h(9/2) x nu i(13/2) bands in the heavier odd-odd Tl nuclei, we have tentatively proposed spin values for the new band in Tl-188. The pi h(9/2) x nu i(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two-quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
The high-spin level structure of Au-188 has been investigated via the Yb-173(F-19,4n gamma) reaction at beam energies of 86 and 90 MeV. The previously reported level scheme has been modified and extended significantly. A new I-pi = 20(+) state associated with pi h(11/2)(-1) circle times nu i(13/2)(-2)h(9/2)(-1) configuration and two new rotational bands, one of which is built on the pi h(9/2) circle times nu i(13/2) configuration, have been identified. The prolate-to-oblate shape transition through triaxial shape has been proposed to occur around Au-188 for the pi h(9/2) circle times nu i(13/2) bands in odd-odd Au isotopes. Evidence for pi h(11/2)(-1) circle times nu i(13/2)(-1) structure of nonaxial shape with gamma < -70 degrees has been obtained by comparison with total Routhian surface and cranked-shell-model calculations.
Resumo:
The high spin levels of a very neutron-rich Zr-104 nucleus have been reinvestigated by measuring the prompt. rays in the spontaneous fission of Cf-252. The ground-state band has been confirmed. A new sideband has been identified with a band-head energy at 1928.7 keV. The projected shell model is employed to investigate the band structure of Zr-104. The results of calculated levels are in good agreement with the experimental data, and suggest that the new band in Zr-104 may be based on the neutron nu 5/2(-)[532] circle times nu 3/2(+)[411] configuration.
Resumo:
Motivated by recent spectroscopy data from fission experiments, we apply the projected shell model to study systematically the structure of strongly deformed, neutron-rich, even-even Nd and Sm isotopes with neutron number from 94 to 100. We perform calculations for rotational bands up to spin I = 20 and analyze the band structure of low-lying states with quasiparticle excitations, with emphasis given to rotational bands based on various negative-parity two-quasiparticle (2-qp) isomers. Experimentally known isomers in these isotopes are described well. The calculations further predict proton 2-qp bands based on a 5(-) and a 7(-) isomer and neutron 2-qp bands based on a 4(-) and an 8(-) isomer. The properties for the yrast line are discussed, and quantities to test the predictions are suggested for future experiment.
Resumo:
High-spin states in Pt-189 have been studied with the in-beam gamma-spectroscopy method via the Yb-176(O-18, 5n) reaction at beam energies of 88 MeV and 95 MeV. A new level scheme of Pt-189 has been established. Rotational bands based on the upsilon i(13/2)(-1), upsilon f(5/2)(p(3/2)) and upsilon i(13/2)(-2)upsilon f(p(3/2)) configurations, as well as several structures with irregular level spacings, have been observed. Properties of rotational bands have been analyzed in the framework of triaxial particle-rotor model. A gamma similar to -30 degrees triaxial shape and a near prolate shape have been proposed to the upsilon i(13/2)(-1) and uf(5/2)(p(3/2)) bands, respectively. Two Delta I=2 transition sequences with similar energies have been observed, and they have been proposed to be associated with the upsilon i(13/2)(-1)upsilon f(5/2)(p(3/2)) configuration. According to the relevant Nilsson orbitals, the bands built on the upsilon i(13/2)(-1)upsilon f(5/2)(p(3/2)) configuration could be interpreted as a pair of pseudo-spin partner.
Resumo:
The reactions of both thiophene and H2S onMo(2)C/Al2O3 catalyst have been studied by in situ FT-IR spectroscopy. CO adsorption was used to probe the surface sites of Mo2C/Al2O3 catalyst under the interaction and reaction of thiophene and H2S. When the fresh Mo2C/Al2O3 catalyst is treated with a thiophene/H-2 mixture above 473 K, hydrogenated species exhibiting IR bands in the regions 2800-3000 cm(-1) are produced on the surface, indicating that thiophene reacts with the fresh carbide catalyst at relatively low temperatures. IR spectra of adsorbed CO on fresh Mo2C/Al2O3 pretreated by thiophene/H-2 at different temperatures clearly reveal the gradual sulfidation of the carbide catalyst at temperatures higher than 473 K, while H2S/H-2 can sulfide the Mo2C/Al2O3 catalyst surface readily at room temperature (RT). The sulfidation of the carbide surface by the reaction with thiophene or H2S maybe the major cause of the deactivation of carbide catalysts in hydrotreating reactions. The surface of the sulfided carbide catalyst can be only partially regenerated by a recarburization using CH4/H-2 at 1033 K. When the catalyst is first oxidized and then recarburized, the carbide surface can be completely reproduced.
Resumo:
Infrared (IR) spectra of normal, hyperplasia, fibroadenoma and carcinoma tissues of human breast obtained from 96 patients have been determined and analyzed statistically. Several spectral differences were detected in the frequency regions of N-H stretching, amide I, II and III bands: (1) the bands in the region 3000-3600cm-1 shifted to lower frequencies for the carcinomatous tissue; (2) the A(3300)/A(3075) absorbance ratio was significantly higher for the fibroadenoma than for the other types of tissues; (3) the frequency of the a-helix amide I band decreased for the malignant tissue, while the corresponding beta -sheet amide I band frequency increased; (4) the A(1657)/A(1635) and A(1553)/A(1540) absorbance ratios were the highest for fibroadenoma and carcinoma tissues; (5) the A(1680)/A(1657) absorbance ratio decreased significantly in the order of normal > hyperplasia > fibroadenoma > carcinoma; (6) the A(1651)/A(1545) absorbance ratio increased slightly for the fibroadenoma and the carcinoma tissues; (7) the bands at 1204 and 1278 cm(-1), assigned to the vibrational modes of the collagen, did not appear in the original spectra as resolved peaks and were distinctly stronger in the deconvoluted spectra of the carcinoma tissue and (8) the A(1657)/A(1204) and A(1657)/A(1278) absorbance ratios, both yielding information on the relative content of collagen, increased in the order of normal < hyperplasia < carcinoma < fibroadenoma. The said differences imply that the information is useful for the diagnosis of breast cancer and malignant breast abnormalities, and may serve as a basis for further studies on conformational changes in tissue proteins during carcinogenesis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We report on time-dependent population distributions of excited rotational states of hydrogen in a capacitively coupled RF discharge. The common model to obtain the gas temperature from the rotational distribution is not applicable at all times during the discharge cycle due to the time dependence of the EEDF. The apparent temperature within a cycle assumes values between 350 K and 450 K for the discharge parameters of this experiment. We discuss the optimum time window within the discharge cycle that yields the best approximation to the actual temperature. Erroneous results can be obtained, in principle, with time-integrated measurements; we find, however, that in the present case the systematic error amounts to only approximately 20 K. This is due to the fact that the dominant contribution to the average intensity arises during that time window for which the assumptions underlying the analysis are best fulfilled. A similar analysis can be performed for N+2 rotational bands with a small amount of nitrogen added to the discharge gas. These populations do not exhibit the time variations found in the case of H2.
Resumo:
We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.
Resumo:
The Exeter stems vary in length from 90 to 150 mm. The shorter stems generally have lower offsets. The purpose of this study was to determine if length of stem, with fixed offset, affected rotational stability. Mechanical testing was carried out on 10 implant-cement constructs with 2 loading profiles, rising from chair and stair climbing, at different simulated implant lengths using purpose-built apparatus. This paper presents a mechanism for clinically observed rotational stability and explains the mechanical characteristics required for rotational stability in Exeter femoral stems. © 2012.
Resumo:
Microcrystalline γ-Y2Si2O7 was indented at room temperature and the deformation microstructure was investigated by transmission electron microscopy in the vicinity of the indent. The volume directly beneath the indent comprises nanometer-sized grains delimited by an amorphous phase while dislocations dominate in the periphery either as dense slip bands in the border of the indent or, further away, as individual dislocations. The amorphous layers and the slip bands are a few nanometers thick. They lie along well-defined crystallographic planes. The microstructural organization is consistent with a stress-induced amorphization process whereby, under severe mechanical conditions, the crystal to amorphous transformation is mediated by slip bands containing a high density of dislocations. It is suggested that the damage tolerance of γ-Y2Si2O7, which is exceptional for a ceramic material, benefits from this transformation.
Resumo:
Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1M(circle dot) stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f(m) of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f(m). Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.