970 resultados para rotational IMRT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns the study of complex conformational surfaces and tautomeric equilibria of molecules and molecular complexes by quantum chemical methods and rotational spectroscopy techniques. In particular, the focus of this research is on the effects of substitution and noncovalent interactions in determining the energies and geometries of different conformers, tautomers or molecular complexes. The Free-Jet Absorption Millimeter Wave spectroscopy and the Pulsed-Jet Fourier Transform Microwave spectroscopy have been applied to perform these studies and the obtained results showcase the suitability of these techniques for the study of conformational surfaces and intermolecular interactions. The series of investigations of selected medium-size molecules and complexes have shown how different instrumental setups can be used to obtain a variety of results on molecular properties. The systems studied, include molecules of biological interest such as anethole and molecules of astrophysical interest such as N-methylaminoethanol. Moreover halogenation effects have been investigated on halogen substituted tautomeric systems (5-chlorohydroxypyridine and 6-chlorohydroxypyridine), where it has shown that the position of the inserted halogen atom affects the prototropic equilibrium. As for fluorination effects, interesting results have been achieved investigating some small complexes where a molecule of water is used as a probe to reveal the changes on the electrostatic potential of different fluorinated compounds: 2-fluoropyridine, 3-fluoropyridine and penta-fluoropyridine. While in the case of the molecular complex between water and 2-fluoropyridine and 3-fluoropyridine the geometry of the complex with one water molecule is analogous to that of pyridine with the water molecule linked to the pyridine nitrogen, the case of pentafluoropyridine reveals the effect of perfluorination and the water oxygen points towards the positive center of the pyridine ring. Additional molecular adducts with a molecule of water have been analyzed (benzylamine-water and acrylic acid-water) in order to reveal the stabilizing driving forces that characterize these complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 2008, a national intensity modulated radiation therapy (IMRT) dosimetry intercomparison was carried out for all 23 radiation oncology institutions in Switzerland. It was the aim to check the treatment chain focused on the planning, dose calculation, and irradiation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory predicts the water hexamer to be the smallest water cluster with a three-dimensional hydrogen-bonding network as its minimum energy structure. There are several possible low-energy isomers, and calculations with different methods and basis sets assign them different relative stabilities. Previous experimental work has provided evidence for the cage, book, and cyclic isomers, but no experiment has identified multiple coexisting structures. Here, we report that broadband rotational spectroscopy in a pulsed supersonic expansion unambiguously identifies all three isomers; we determined their oxygen framework structures by means of oxygen-18–substituted water (H218O). Relative isomer populations at different expansion conditions establish that the cage isomer is the minimum energy structure. Rotational spectra consistent with predicted heptamer and nonamer structures have also been identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One observed vibration mode for Tainter gate skinplates involves the bending of the skinplate about a horizontal nodal line. This vibration mode can be approximated as a streamwise rotational vibration about the horizontal nodal line. Such a streamwise rotational vibration of a Tainter gate skinplate must push away water from the portion of the skinplate rotating into the reservoir and draw water toward the gate over that portion of the skinplate receding from the reservoir. The induced pressure is termed the push-and-draw pressure. In the present paper, this push-and-draw pressure is analyzed using the potential theory developed for dissipative wave radiation problems. In the initial analysis, the usual circular-arc skinplate is replaced by a vertical, flat, rigid weir plate so that theoretical calculations can be undertaken. The theoretical push-and-draw pressure is used in the derivation of the non-dimensional equation of motion of the flow-induced rotational vibrations. Non-dimensionalization of the equation of motion permits the identification of the dimensionless equivalent added mass and the wave radiation damping coefficients. Free vibration tests of a vertical, flat, rigid weir plate model, both in air and in water, were performed to measure the equivalent added mass and the wave radiation damping coefficients. Experimental results compared favorably with the theoretical predictions, thus validating the theoretical analysis of the equivalent added mass and wave radiation damping coefficients as a prediction tool for flow-induced vibrations. Subsequently, the equation of motion of an inclined circular-arc skinplate was developed by incorporating a pressure correction coefficient, which permits empirical adaptation of the results from the hydrodynamic pressure analysis of the vertical, flat, rigid weir plate. Results from in-water free vibration tests on a 1/31-scale skinplate model of the Folsom Dam Tainter gate are used to demonstrate the utility of the equivalent added mass coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have chan- ged the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (13C, 15N, 18O) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2–8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)7, in both 2– 8 GHz and 6–18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to pro- vide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues (H218O and HDO), and a least-squares rm(1) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O–O equilibrium distances at the 0.01 Å level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have changed the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (C-13, N-15, O-18) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2-8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)(7), in both 2-8 GHz and 6-18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to provide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues ((H2O)-O-18 and HDO), and a least-squares r(m)((1)) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O-O equilibrium distances at the 0.01 angstrom level. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We combine the technique of femtosecond degenerate four-wave mixing (fs-DFWM) with a high repetition-rate pulsed supersonic jet source to obtain the rotational coherence spectrum (RCS) of cold cyclohexane (C(6)H(12)) with high signal/noise ratio. In the jet expansion, the near-parallel flow pattern combined with rapid translational cooling effectively eliminate dephasing collisions, giving near-constant RCS signal intensities over time delays up to 5 ns. The vibrational cooling in the jet eliminates the thermally populated vibrations that complicate the RCS coherences of cyclohexane at room temperature [Bragger, G.; et al. J. Phys. Chem. A 2011, 115, 9567]. The rotational cooling reduces the high-J rotational-state population, yielding the most accurate ground-state rotational constant to date, B(0) = 4305.859(9) MHz. Based on this B(0), a reanalysis of previous room-temperature gas-cell RCS measurements of cydohexane gives improved vibration rotation interaction constants for the v(32), v(6), v(16), and v(24) vibrational states. Combining the experimental B(0)(C(6)H(12)) with CCSD(T) calculations yields a very accurate semiexperimental equilibrium structure of the chair isomer of cyclohexane

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates four decades of socio-economic and environmental change in a shifting cultivation landscape in the northern uplands of Laos. Historical changes in land cover and land use were analyzed using a chronological series of remote sensing data. Impacts of landscape change on local livelihoods were investigated in seven villages through interviews with various stakeholders. The study reveals that the complex mosaics of agriculture and forest patches observed in the study area have long constituted key assets for the resilience of local livelihood systems in the face of environmental and socio-economic risks. However, over the past 20 years, a process of segregating agricultural and forest spaces has increased the vulnerability of local land users. This process is a direct outcome of policies aimed at increasing national forest cover, eradicating shifting cultivation and fostering the emergence of more intensive and commercial agricultural practices. We argue that agriculture-forest segregation should be buffered in such a way that a diversity of livelihood opportunities and economic development pathways can be maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to investigate to what extent it is possible to use the secondary collimator jaws to reduce the transmitted radiation through the multileaf collimator (MLC) during an intensity modulated radiation therapy (IMRT). A method is developed and introduced where the jaws follow the open window of the MLC dynamically (dJAW method). With the aid of three academic cases (Closed MLC, Sliding-gap, and Chair) and two clinical cases (prostate and head and neck) the feasibility of the dJAW method and the influence of this method on the applied dose distributions are investigated. For this purpose the treatment planning system Eclipse and the Research-Toolbox were used as well as measurements within a solid water phantom were performed. The transmitted radiation through the closed MLC leads to an inhomogeneous dose distribution. In this case, the measured dose within a plane perpendicular to the central axis differs up to 40% (referring to the maximum dose within this plane) for 6 and 15 MV. The calculated dose with Eclipse is clearly more homogeneous. For the Sliding-gap case this difference is still up to 9%. Among other things, these differences depend on the depth of the measurement within the solid water phantom and on the application method. In the Chair case, the dose in regions where no dose is desired is locally reduced by up to 50% using the dJAW method instead of the conventional method. The dose inside the chair-shaped region decreased up to 4% if the same number of monitor units (MU) as for the conventional method was applied. The undesired dose in the volume body minus the planning target volume in the clinical cases prostate and head and neck decreased up to 1.8% and 1.5%, while the number of the applied MU increased up to 3.1% and 2.8%, respectively. The new dJAW method has the potential to enhance the optimization of the conventional IMRT to a further step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational atherectomy has been regaining interest over the last couple of years after it almost has disappeared from most interventional catheterization laboratories for several years due to failure to prove its original concept of improving long term results of percutaneous coronary interventions (PCI) as was repeatedly shown in studies in the 1990s. Its revival coupled the introduction of drug-eluting stents (DES); these devices have led to treating much more complex lesions and high-risk patients by PCI. However, real-world experience suggested that off-label use of DES is associated with a higher rate of early and late stent thrombosis. Therefore, more attention is now being paid to the initial implantation technique of DES including aggressive lesion preparation to facilitate stent delivery and expansion. The limited studies with rot-ablation and DES showed promising results with no long term safety concerns. In these studies, a subtle observation was made suggesting that rot-ablation prior to DES implantation in such lesions may have an add-on effect on long term outcome compared to DES alone. An ongoing multicenter study is investigating such effect among complex calcified coronary lesions. Even if this additive benefit does not prove true, rot-ablation remains an efficient tool for preparing certain lesions to facilitate effective and safe DES implantation. Therefore, interventional training programs should focus on this difficult technique to bridge the gap of experience which resulted from neglecting it for several years. In this regard, dedicated courses at experienced sites as well as medical simulation may be appropriate.