959 resultados para right-of-way
Resumo:
Rapid population increase and booming economic growth have caused a significant escalation in car ownership in many cities, leading to additional or, multiple traffic problems on congested roadways. The increase of automobiles is generating a significant amount of congestion and pollution in many cities. It has become necessary to find a solution to the ever worsening traffic problems in our cities. Building more roadways is nearly impossible due to the limitations of right-of-way in cities. Studies have shown that guideway transit could provide effective transportation and could stimulate land development. The Medium-Capacity Guideway Transit (MCGT) is one of the alternatives to solve this problem. The objective of this research was to better understand the characteristics of MCGT systems, to investigate the existing MCGT systems around the world and determine the main factors behind the planning of successful systems, and to develop a MCGT planning guide. The factors utilized in this study were determined and were analyzed using Excel. A MCGT Planning Guide was developed using Microsoft Visual Basic. ^ A MCGT was defined as a transit system whose capacity can carry up to 20,000 passengers per hour per direction (pphpd). The results shown that Light Rail Transit (LRT) is favored when peak hour demand is less than 13,000 pphpd. Automated People Mover (APM) is favored when the peak hour demand is more than 18,000 pphpd. APM systems could save up to three times the waiting time cost compared to that of the LRT. If comfort and convenience are important, then using an APM does make sense. However, if cost is the critical factor, then LRT will make more sense because it is reasonable service at a reasonable price. If travel time and safety (accident/crush) costs were included in calculating life-cycle “total” costs, the capital cost advantage of LRT disappeared and APM could become very competitive. The results also included a range of cost-performance criteria for MCGT systems that help planners, engineers, and decision-makers to select the most feasible system for their respective areas. ^
Resumo:
This paper provides an introduction to issues surrounding the participation rights of young people in research and the implications of their growing involvement in research as well as providing a discourse on the ethical implications related to consent. The unique contribution of this paper is that it considers children’s rights in respect to the increasing opportunities for young people to take part in evaluation research. The aim of this paper, therefore, is to acknowledge the growing involvement for young people in research and the implications of ensuring that their rights of participation are respected. Secondly we will consider the children’s rights legislation and our obligations as researchers to implement this. Finally we will explore consent as an issue in its own right as well as the practicalities of accessing participants. This paper will postulate that any research about young people should involve and prioritise at all stages of the research process; including participation in decision-making. We conclude by identifying five key principles, which we believe can help to facilitate the fulfilment of post-primary pupils’ ability to consent to participate in trials and evaluative research.
Resumo:
Explanation of the right of Long-Term Care residents or tenants to participate in research studies. Includes the guidelines for participation.
Resumo:
This design-research thesis suggests that the improvement of North East Street performances by using Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices. Heavily used by a variety of users, often conflicting with one another, University of Maryland Campus Drive would benefit from a major planning and design amelioration to meet the increasing demands of serving as a city main street. The goal of this thesis project is to prioritize the benefits for pedestrians in the right-of-way and improve the pedestrian experience. This goal also responds to the recent North East Street Extension Phrase I of economic renaissances. The goal of this design-research thesis will be achieved focusing on four aspects. First, the plans and designs will suggest to building mixed use blocks, increase the diversity of street economic types and convenience of people’s living. Second, design and plans will propose bike lanes, separate driving lanes from sidewalks and bike lanes by street tree planters, and narrow driving lanes to reduce vehicular traffic volume and speed in order to reduce pedestrian and vehicle conflicts. Third, plans and designs will introduce bioswales, living walls and raingardens to treat and reuse rain water. Finally, the plans and designs will seek to preserve local culture and history by adding murals and farmers market. The outcome of the design-research thesis project is expected to serve as an example of implementing Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices in urban landscape, where transportation, environment and social needs interact with each other.
Resumo:
Blowing snow can cause significant problems for mobility and safety during winter weather in three distinct ways. It may drift onto the road, thus requiring almost continuous plowing while the wind is blowing (which may occur when a given winter storm is over). Snow may drift onto wet pavement (perhaps caused by ice control chemicals) and dilute out the chemicals on the road, creating ice on the road. And sufficient blowing snow can cause a major deterioration in visibility on the road, a factor which has been shown to be significant in winter crashes. The problem of blowing snow can be very effectively addressed by creating a snow storage device upwind of the road that requires protection from snow drifting. Typically, these storage devices are fences. Extensive design guidance exists for the required height and placement of such fences for a given annual snowfall and given local topography. However, the design information on the placement of living snow fences is less complete. The purpose of this report is to present the results of three seasons of study on using standing corn as snow fences. In addition, the experience of using switch grass as a snow storage medium is also presented. On the basis of these experimental data, a design guide has been developed that makes use of the somewhat unique snow storage characteristics of standing corn snow fences. The results of the field tests on using standing corn showed that multiple rows of standing corn store snow rather differently than a traditional wooden snow fence. Specifically, while a traditional fence stores most of the snow downwind from the fence (and thus must be placed a significant distance upwind of the road to be protected, specifically at least 35 times the snow fence height) rows of standing corn store the majority of the snow within the rows. Results from the three winters of testing show that the standing corn snow fences can store as much snow within the rows of standing corn as a traditional fence of typical height for operation in Iowa (4 to 6 feet) can store. This finding is significant because it means that the snow fences can be placed at the edge of the farmer’s field closest to the road, and still be effective. This is typically much more convenient for the farmer and thus may mean that more farmers would be willing to participate in a program that uses standing corn than in traditional programs. ii On the basis of the experimental data, design guidance for the use of standing corn as a snow storage device in Iowa is given in the report. Specifically, it is recommended that if the fetch in a location to be protected is less than 5,000 feet, then 16 rows of standing corn should be used, at the edge of the field adjacent to the right of way. If the fetch is greater than 5,000 feet, then 24 rows of standing corn should be used. This is based on a row spacing of 22 inches. Further, it should be noted that these design recommendations are ONLY for the State of Iowa. Other states of course have different winter weather and without extensive further study, it cannot be said that these guidelines would be effective in other locations with other winter conditions.
Resumo:
For most people, highway engineering, design and right of way acquisition are not of immediate concern. However, when you own or rent property that will be affected by highway construction, you begin to consider road building from a different and personal viewpoint Right of way is the land on which highways are built. The amount of land needed depends on the engineering standards that must be met for the type of highway that will be built or improved. This booklet will acquaint property owners, tenants and the public with the procedures the Iowa Department of Transportation follows in acquiring right of way for a highway. It is not a source of technical definitions or legal advice. Further, it is not intended to establish a legal standard.
Resumo:
The Iowa Transportation Improvement Program (Program) is published to inform Iowans of planned investments in our state’s transportation system. The Iowa Transportation Commission (Commission) and Iowa Department of Transportation (Iowa DOT) are committed to programming those investments in a fiscally responsible manner. This document reflects Iowa’s multimodal transportation system by the inclusion of investments in aviation, transit, railroads, trails, and highways. A major component of this program is the highway section that documents programmed investments on the primary highway system for the next five years. A large part of funding available for highway programming comes from the federal government. Accurately estimating future federal funding levels is dependent on having a current enacted multi-year federal transportation authorization. The most recent authorization, Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), expired September 30, 2009, and to date it has been extended seven times because a new authorization has not yet been enacted. The current extension will expire September 30, 2011. This leads to significant uncertainty in federal funding; however, it is becoming evident that, in Federal Fiscal Year 2012 and beyond, federal funding revenue will likely be reduced by 25 percent from current levels in order to match revenue that flows into the Highway Trust Fund. This Program reflects this anticipated reduction in federal funding. While Iowa law does not require the adoption of a Program when federal transportation funding is being reauthorized, the Commission believes it is important to adopt a Program in order to continue on-going planning and project development efforts so that Iowa will be well positioned when a new authorization is adopted. However, it is important to recognize that, absent a federal authorization bill, there is significant uncertainty in the forecast of federal revenues. The Commission and the Iowa DOT will continue to monitor federal revenues and will adjust future investments as needed to maintain a fiscally responsible Program. For 2012-2016, approximately $2.3 billion is forecast to be available for highway right of way and construction. In developing the highway section of the Program, the Commission’s primary investment objective remains stewardship (i.e. safety, maintenance and preservation) of Iowa’s existing highway system. Over $1.3 billion is programmed in FY2012 through FY2016 for preservation of Iowa’s existing highway system and for enhanced highway safety features. The highway section also includes significant interstate investments on I-29 in Sioux City, I-29/80/480 in Council Bluffs, and I-74 in Bettendorf/Davenport. The FY2016 programming for construction on I-74 in Bettendorf/Davenport is the first of several years of significant investments that will be monitored for available funding. Approximately $200 million of the investments on these three major urban interstate projects address preservation needs. In total, approximately $1.5 billion is programmed for highway preservation activities for 2012- 2016. Another highway programming objective is maintaining the scheduled completion of capacity and economic development projects. Projects that were previously scheduled to be completed within the previous Program continue on their current schedule. However, due to the reduction of projected federal revenues, the Commission has delayed by one year the initiation of construction of all multi-year non-Interstate capacity and economic development projects that cannot be completed within this Program. These projects are U.S. 20 in Woodbury County, U.S. 30 in Benton County, U.S. 61 in Louisa County, and Iowa 100 in Linn County. The Iowa DOT and Commission appreciate the public’s involvement in the state’s transportation planning process. Comments received personally, by letter or through participation in the Commission’s regular meetings or public input meetings held around the state each year, are invaluable in providing guidance for the future of Iowa’s transportation system. It should be noted that this document is a planning guide. It does not represent a binding commitment or obligation of the Commission or Iowa DOT, and is subject to change.
Resumo:
For most people, highway engineering, design and right of way acquisition are not of immediate concern. However, when you own or rent property that will be affected by highway construction, you begin to consider road building from a different and personal viewpoint. Right of way is the land on which highways are built. The amount of land needed depends on the engineering standards that must be met for the type of highway that will be built or improved. This booklet will acquaint property owners, tenants and the public with the procedures the Iowa Department of Transportation follows in acquiring right of way for a highway. It is not a source of technical definitions or legal advice. Further, it is not intended to establish a legal standard.
Resumo:
The Iowa Transportation Commission (Commission) and the Iowa Department of Transportation (DOT) develop Iowa’s Five Year Highway Program (Program) to inform you of planned investments in our state’s primary and interstate highway system. This brochure summarizes the FY 2013-2017 Program. $2.6 billion is forecast for highway right of way and construction. The Program is updated and approved in June of each year. A large part of funding available for highway programming comes from the federal government. Accurately estimating future federal funding levels is dependent on having a multiyear federal transportation authorization bill in place. The most recent authorization, Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU), expired September 30, 2009, and to date it has been extended nine times because a new authorization has not yet been enacted. The current extension will expire June 30, 2012.
Resumo:
The Iowa Motorcycle Operator Manual states that when a motorcycle and another vehicle collide, more than half of these crashes are caused by drivers entering the rider’s right-of-way. Furthermore, in crashes with motorcyclists, drivers often say they never saw the motorcycle. Therefore, increasing motorcycle conspicuity could help address these issues, resulting in fewer crashes (and injuries and damage).
Resumo:
There has been a great deal of concern by county engineers and supervisors over constrained budgets, lack of resources and a deteriorating infrastructure, as they affect the secondary road system in Iowa. In addition, public input and/or political pressure have been increasing over the years. This study was initiated to determine the most important issues facing counties and document the way in which various Iowa counties have been addressing those issues. The list of issues was developed through meetings of county engineers and supervisors in each of the Iowa Department of Transportation (DOT) regions around the state. Questionnaires were sent to all engineers and supervisors statewide asking them how the various issues (e.g. snow and ice removal policies, Level "B" roads, and so on) were handled in their respective counties. The responses were then compiled into this document. The subjects selected and used include: county policies, ordinances, resolutions; snow and ice removal policy; dust control; Level "B" roads; vacating roads; rural development; private entrance construction and maintenance; roadside management practices; right of way encroachments and easements; personnel matters, staff and organization; communicating information to citizens; supervisor/ engineer relations; and county leasing/purchasing practices.
Resumo:
Before the Iowa Department of Transportation (DOT) was established by legislation in July 1974, there were several state agencies that handled the tasks that are now the responsibility of an integrated, multimodal Iowa DOT. Among those agencies was the Iowa State Highway Commission (IHC). You are invited to read a brief history of the Iowa DOT here:http://www.iowadot.gov/about/organizationalhistory.htm The IHC operated as an independent state agency between 1913 and 1974. In 1968, the IHC created and released This is YOUR Highway Commission, a 24 ½- minute film that showcased the responsibilities and functions of the IHC. The narrator describes the activities of various offices and employees, and explains how those activities benefited Iowa’s citizens and motorists. The film journeys through all areas of IHC responsibility to Iowa’s roadways, including administration, planning, design, bidding, right of way, materials, construction, maintenance and facilities. As part of the Iowa DOT’s effort to preserve and archive its historical resources, the original 16mm film was professionally cleaned, restored and digitized so that it could be made available via this website. The Iowa DOT is currently researching and compiling information necessary to prepare detailed biographies of the IHC employees identified in the film. Included in each biography will be still frames taken from the film, as well as other images from the Iowa DOT’s archives. This more comprehensive description of the film will be available in the future. In the meantime, below is a list of the IHC employees who have been identified. The list is arranged in the order in which each employee first appears in the film. There remain numerous unidentified employees in the film, and the Iowa DOT would greatly appreciate any assistance in identifying them. If you recognize an IHC employee in the film who is not on this list, please contactbeth.collins@dot.iowa.gov with any information you feel would be useful. Identified employees: Joseph Coupal, Jr.—Director of Highways Harry Bradley—Commissioner Derby Thompson—Commissioner John Hansen—Commissioner Koert Voorhees—Commissioner Harold Shiel—Engineer Howard Gunnerson—Chief engineer Martha Groth—Commission Secretary Robert Barry—Commissioner Nancy Groomes—Director’s Secretary Russell Moreland—Planning C.B. Anderson—Planning Gus Anderson—Engineer Carl Schach—Deputy chief engineer Raymond Kassel—Hearings engineer (later director of Transportation) Bob Given—Deputy chief engineer Don McLean—Director of Engineering Howard Thielen—Surveying (using rod) John Huss—Surveying (using leveling transit) John “Harley” McCoy—Surveying (taking notes) Jim Smith—Right of Way Keith Davis—Contracts Sherrill P. Freed—Sign Shop Olav Smedal—Director of Public Information
Resumo:
Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.
Resumo:
Reinforced Earth is a French development that has been used in the United States for approximately ten years. Virbro-Replacement, more commonly referred to as stone columns, is an outgrowth of deep densification of cohesionless soils originally developed in Germany. Reinforced Earth has applicability when wall height is greater than about twelve feet and deep seated foundation failure is not a concern. Stone columns are applicable when soft, cohesive subsoil conditions are encountered and bearing capacity and shearing resistance must be increased. The conditions in Sioux City on Wesley Way can be summarized as: (1) restricted right of way, (2) fill height in excess of 25 feet creating unstable conditions, (3) adjacent structures that could not be removed. After analyzing alternatives, it was decided that Reinforced Earth walls constructed on top of stone columns were the most practical approach.