958 resultados para rhodamine B dye
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Barium praseodymium tungstate (Ba1-xPr2x/3)WO4 crystals with (x = 0, 0.01, and 0.02) were prepared by the coprecipitation method. These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements, Fourier-transform Raman (FT-Raman) and Fourier-transform infrared (FT-IR) spectroscopies. The shape and size of these crystals were observed by field emission scanning electron microcopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. Moreover, we have studied the photocatalytic (PC) activity of crystals for degradation of rhodamine B (RhB) dye. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all crystals exhibit a tetragonal structure without deleterious phases. FT-Raman spectra exhibited 13 Raman-active modes in a range from 50 to 1000 cm(-1), while FT-IR spectra have 8 infrared active modes in a range from 200 to 1050 cm(-1). FE-SEM images showed different shapes (bonbon-, spindle-, rice-and flake-like) as well as a reduction in the crystal size with an increase in Pr3+ ions. A possible growth process was proposed for these crystals. UV-vis absorption measurements revealed a decrease in optical band gap values with an increase of Pr3+ into the matrix. An intense green PL emission was noted for (Ba1-xPr2x/3)WO4 crystals (x = 0), while crystals with (x = 0.01 and 0.02) produced a reduction in the wide band PL emission and the narrow band PL emission which is related to f-f transitions from Pr3+ ions. High photocatalytic efficiency was verified for the bonbon-like BaWO4 crystals as a catalyst in the degradation of the RhB dye after 25 min under UV-light. Finally, we discuss possible mechanisms for PL and PC properties of these crystals.
Resumo:
The aim of this in vitro study was to assess the agreement among four techniques used as gold standard for the validation of methods for occlusal caries detection. Sixty-five human permanent molars were selected and one site in each occlusal surface was chosen as the test site. The teeth were cut and prepared according to each technique: stereomicroscopy without coloring (1), dye enhancement with rhodamine B (2) and fuchsine/acetic light green (3), and semi-quantitative microradiography (4). Digital photographs from each prepared tooth were assessed by three examiners for caries extension. Weighted kappa, as well as Friedman's test with multiple comparisons, was performed to compare all techniques and verify statistical significant differences. Results: kappa values varied from 0.62 to 0.78, the latter being found by both dye enhancement methods. Friedman's test showed statistical significant difference (P < 0.001) and multiple comparison identified these differences among all techniques, except between both dye enhancement methods (rhodamine B and fuchsine/acetic light green). Cross-tabulation showed that the stereomicroscopy overscored the lesions. Both dye enhancement methods showed a good agreement, while stereomicroscopy overscored the lesions. Furthermore, the outcome of caries diagnostic tests may be influenced by the validation method applied. Dye enhancement methods seem to be reliable as gold standard methods.
Resumo:
Variations in the physical deformation of the plasma membrane play a significant role in the sorting and behavior of the proteins that occupy it. Determining the interplay between membrane curvature and protein behavior required the development and thorough characterization of a model plasma membrane with well defined and localized regions of curvature. This model system consists of a fluid lipid bilayer that is supported by a dye-loaded polystyrene nanoparticle patterned glass substrate. As the physical deformation of the supported lipid bilayer is essential to our understanding of the behavior of the protein occupying the bilayer, extensive characterization of the structure of the model plasma membrane was conducted. Neither the regions of curvature in the vicinity of the polystyrene nanoparticles or the interaction between a lipid bilayer and small patches of curved polystyrene are well understood, so the results of experiments to determine these properties are described. To do so, individual fluorescently labeled proteins and lipids are tracked on this model system and in live cells. New methods for analyzing the resulting tracks and ensemble data are presented and discussed. To validate the model system and analytical methods, fluorescence microscopy was used to image a peripheral membrane protein, cholera toxin subunit B (CTB). These results are compared to results obtained from membrane components that were not expected to show an preference for membrane curvature: an individual fluorescently-labeled lipid, lissamine rhodamine B DHPE, and another protein, streptavidin associated with biotin-labeled DHPE. The observed tendency for cholera toxin subunit B to avoid curved regions of curvature, as determined by new and established analytical methods, is presented and discussed.
Resumo:
Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The key to the use of polymersomes as effective molecular delivery systems is in the ability to design processing routes that can efficiently encapsulate the molecular payload. We have evaluated various surface rehydration mechanisms for encapsulation, in each case characterizing the morphologies formed using DLS and confocal microscopy as well as determining the encapsulation efficiency for the hydrophilic dye Rhodamine B. In contrast to bulk methods, where the encapsulation efficiencies are low, we find that higher efficiencies can be obtained by the rehydration of thin films. We relate these results to the non-equilibrium mechanisms that underlie vesicle formation and discuss how an understanding of these mechanisms can help optimize encapsulation efficiencies. Our conclusion is that, even considering the good encapsulation efficiency, surface methods are still unsuitable for the massive scale-up needed when applied to commercial mass market molecular delivery scenarios. However, targeting more specialized applications for high value ingredients (like pharmaceuticals) might be more feasible.
Resumo:
The textile industry is one of the most polluting in the world (AHMEDCHEKKAT et al. 2011), generating wastewater with high organic loading. Among the pollutants present in these effluents are dyes, substances with complex structures, toxic and carcinogenic characteristics, besides having a strong staining. Improper disposal of these substances to the environment, without performing a pre-treatment can cause major environmental impacts. The objective this thesis to use a technique of electrochemical oxidation of boron doped diamond anode, BDD, for the treatment of a synthetic dye and a textile real effluent. In addition to studying the behavior of different electrolytes (HClO4, H3PO4, NaCl and Na2SO4) and current densities (15, 60, 90 and 120 mA.cm-2 ), and compare the methods with Rhodamine B (RhB) photolysis, electrolysis and photoelectrocatalytic using H3PO4 and Na2SO4. Electrochemical oxidation studies were performed in different ratio sp3 /sp2 of BDD with solution of RhB. To achieve these objectives, analysis of pH, conductivity, UV-visible, TOC, HPLC and GC-MS were developed. Based on the results with the Rhodamine B, it was observed that in all cases occurred at mineralization, independent of electrolyte and current density, but these parameters affect the speed and efficiency of mineralization. The radiation of light was favorable during the electrolysis of RhB with phosphate and sulfate. Regarding the oxidation in BDD anode with different ratio sp3 /sp2 (165, 176, 206, 220, 262 e 329), with lower carbon-sp3 had a longer favoring the electrochemical conversion of RhB, instead of combustion. The greater the carbon content on the anodes BDD took the biggest favor of direct electrochemical oxidation
Resumo:
Three porous amorphous silica minerals, including diatomite, opal and porous precipitated SiO2wereadopted to prepare supported TiO2catalysts by hydrolysis–deposition method. The prepared compoundmaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fouriertransform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Through morphology and physical chemistry properties of the resultingTiO2/amorphous SiO2catalysts, it was proposed that the nature of silica supports could affect the particlesize and the crystal form of TiO2and then further influence the photocatalytic property of TiO2/amorphousSiO2catalysts. The catalytic properties of these porous amorphous silica supported photocatalysts(TiO2/SiO2) were investigated by UV-assisted degradation of Rhodamine B (RhB). Compared with pureTiO2(P25) and the other two TiO2/amorphous SiO2catalysts, TiO2/diatomite photocatalyst exhibits bet-ter catalytic performance at different calcined temperatures, the decoloration rate of which can be upto over 85% even at a relatively low calcined temperature. The TiO2/diatomite photocatalyst possessesmixed-phase TiO2with relatively smaller particles size, which might be responsible for higher photo-catalytic activity. Moreover, the stable and much inerter porous microstructure of diatomite could beanother key factor in improving its activity.
Resumo:
A rapid electrochemical method based on using a clean hydrogen-bubble template to form a bimetallic porous honeycomb Cu/Pd structure has been investigated. The addition of palladium salt to a copper-plating bath under conditions of vigorous hydrogen evolution was found to influence the pore size and bulk concentration of copper and palladium in the honeycomb bimetallic structure. The surface was characterised by X-ray photoelectron spectroscopy, which revealed that the surface of honeycomb Cu/Pd was found to be rich with a Cu/Pd alloy. The inclusion of palladium in the bimetallic structure not only influenced the pore size, but also modified the dendritic nature of the internal wall structure of the parent copper material into small nanometre-sized crystallites. The chemical composition of the bimetallic structure and substantial morphology changes were found to significantly influence the surface-enhanced Raman spectroscopic response for immobilised rhodamine B and the hydrogen-evolution reaction. The ability to create free-standing films of this honeycomb material may also have many advantages in the areas of gas- and liquid-phase heterogeneous catalysis.
Resumo:
Diatomite, a porous non-metal mineral, was used as support to prepare TiO2/diatomite composites by a modified sol–gel method. The as-prepared composites were calcined at temperatures ranging from 450 to 950 _C. The characterization tests included X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with an energy-dispersive X-ray spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption measurements. The XRD analysis indicated that the binary mixtures of anatase and rutile exist in the composites. The morphology analysis confirmed the TiO2 particles were uniformly immobilized on the surface of diatom with a strong interfacial anchoring strength, which leads to few drain of photocatalytic components during practical applications. In further XPS studies of hybrid catalyst, we found the evidence of the presence of Ti–O–Si bond and increased percentage of surface hydroxyl. In addition, the adsorption capacity and photocatalytic activity of synthesized TiO2/diatomite composites were evaluated by studying the degradation kinetics of aqueous Rhodamine B under UV-light irradiation. The photocatalytic degradation was found to follow pseudo-first order kinetics according to the Langmuir–Hinshelwood model. The preferable removal efficiency was observed in composites by 750 _C calcination, which is attributed to a relatively appropriate anatase/rutile mixing ratio of 90/10.
Resumo:
A multifunctional iron oxide based nanoformulation for combined cancer-targeted therapy and multimodal imaging has been meticulously designed and synthesized using a chemoselective ligation approach. Novel superparamagnetic magnetite nanoparticles simultaneously functionalized with amine, carboxyl, and azide groups were fabricated through a sequence of stoichiometrically controllable partial succinylation and Cu (II) catalyzed diazo transfer on the reactive amine termini of 2-aminoethylphosphonate grafted magnetite nanoparticles (MNPs). Functional moieties associated with MNP surface were chemoselectively conjugated with rhodamine B isothiocyanate (RITC), propargyl folate (FA), and paclitaxel (PTX) via tandem nucleophic addition of amine to isothithiocyanates, Cu (I) catalyzed azide-alkyne click chemistry and carbodiimide-promoted esterification. An extensive in vitro study established that the bioactives chemoselectively appended to the magnetite core bequeathed multifunctionality to the nanoparticles without any loss of activity of the functional molecules. Multifunctional nanoparticles, developed in the course of the study, could selectively target and induce apoptosis to folate-receptor (FR) overexpressing cancer cells with enhanced efficacy as compared to the free drug. In addition, the dual optical and magnetic properties of the synthesized nanoparticles aided in the real-time tracking of their intracellular pathways also as apoptotic events through dual fluorescence and MR-based imaging.
Resumo:
In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
ZnO nanostructured films were deposited at room temperature on glass substrates and cotton fabrics by activated reactive evaporation in a single step without using metal catalyst or templates. Morphological observation has shown that the nanostructured film contains seaurchin-like structures, and this seaurchin containing large number of randomly grown ZnO nanoneedles. Microstructural analysis revealed the single crystalline nature of the grown nanoneedles and their growth direction was indentified to be along [0002]. PL spectrum of nanostructured films has shown a relatively weak near-band-edge emission peak at 380 nm, and a significant broad peak at 557 nm due to the oxygen vacancy-related emission. ZnO nanostructured films grown on glass substrates and cotton fabrics have shown good photocatalytic activity against rhodamine B.