927 resultados para resonance capacitance
Resumo:
Some paramagnetic superoxide ions detectable by electron paramagnetic resonance (EPR) can be generated on Au/ZnO catalyst by oxygen adsorption at room temperature as well as at 553 K. In both the cases, the O-2(-) ions are present on the catalyst surface. The disappearance of the O-2(-) signal by the introduction of carbon monoxide over the catalyst surface implies that the O-2(-) ions are either the active oxygen species or the precursors of the active oxygen species. The CO3- species produced are also detected by EPR. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A new method to extract MOSFET's threshold voltage VT by measurement of the gate-to-substrate capacitance C-gb of the transistor is presented. Unlike existing extraction methods based on I-V data, the measurement of C-gb does not require de drain current to now between drain and source thus eliminating the effects of source and drain series resistance R-S/D, and at the same time, retains a symmetrical potential profile across the channel. Experimental and simulation results on devices with different sizes are presented to justify the proposed method.
Resumo:
This paper presents a new approach for the design of genuinely finite-length shim and gradient coils, intended for use in magnetic resonance imaging equipment. A cylindrical target region is located asymmetrically, at an arbitrary position within a coil of finite length. A desired target field is specified on the surface of that region, and a method is given that enables winding patterns on the surface of the coil to be designed, to produce the desired field at the inner target region. The method uses a minimization technique combined with regularization, to find the current density on the surface of the coil. The method is illustrated for linear, quadratic and cubic magnetic target fields located asymmetrically within a finite-length coil.
Resumo:
A method is presented for the systematic design of asymmetric zonal shim coils for magnetic resonance applications. Fourier-series methods are used to represent the magnetic field inside and outside a circular cylinder of length 2L and radius a. The current density on the cylinder is also represented using Fourier series. Any desired field can be specified in advance on the cylinder's radius, over some nonsymmetric portion pL
Resumo:
When patients undergo a magnetic resonance imaging scan, they are subject to both strong static and temporal magnetic fields. The temporal fields are designed to vary at each point in the region being imaged. This is achieved by the use of gradient coils. However, when the gradient coils are switched very rapidly, the strongly time-varying magnetic fields produced can be responsible for stimulating nerves in the peripheral regions of the body. This paper gives a somewhat novel explanation for this phenomenon. The physical mechanism suggested is supported by an illustrative theoretical calculation.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
A two-dimensional numerical simulation model of interface states in scanning capacitance microscopy (SCM) measurements of p-n junctions is presented-In the model, amphoteric interface states with two transition energies in the Si band gap are represented as fixed charges to account for their behavior in SCM measurements. The interface states are shown to cause a stretch-out-and a parallel shift of the capacitance-voltage characteristics in the depletion. and neutral regions of p-n junctions, respectively. This explains the discrepancy between - the SCM measurement and simulation near p-n junctions, and thus modeling interface states is crucial for SCM dopant profiling of p-n junctions. (C) 2002 American Institute of Physics.
Resumo:
Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Articulatory patterns and nasal resonance were assessed before and 6 months after orthognathic reconstruction surgery in five patients with dentofacial deformities. Perceptual and physiological assessments showed disorders of nasality and articulatory function preoperatively, two patients being hyponasal, and one hypernasal. Four patients had mild articulatory deficits, and four had reduced maximal lip or tongue pressures. Operation resulted in different patterns of change. Nasality deteriorated in three patients and articulatory precision and intelligibility improved in only one patient and showed no change in the other four. Operation improved interlabial pressures in three patients, while its impact on tongue pressures varied, being improved in one case, deteriorating in one, and remaining unchanged in the other three. The variability in the results highlights the need for routine assessment of speech and resonance before and after orthognathic reconstruction. (C) 2002 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
This article proposes a more accurate approach to dopant extraction using combined inverse modeling and forward simulation of scanning capacitance microscopy (SCM) measurements on p-n junctions. The approach takes into account the essential physics of minority carrier response to the SCM probe tip in the presence of lateral electric fields due to a p-n junction. The effects of oxide fixed charge and interface state densities in the grown oxide layer on the p-n junction samples were considered in the proposed method. The extracted metallurgical and electrical junctions were compared to the apparent electrical junction obtained from SCM measurements. (C) 2002 American Institute of Physics.