956 resultados para resistance genes
Resumo:
OBJECTIVES: To characterize Tn6198, a novel conjugative transposon from the clinical Listeria monocytogenes strain TTH-2007, which contains the tetracycline and trimethoprim resistance genes tet(M) and dfrG, respectively, and to assess its transferability in vitro and in situ. METHODS: The complete sequence of Tn6198 was determined using a primer walking strategy. Horizontal gene transfer studies were performed by filter matings, as well as on the surface of smear-ripened cheese and smoked salmon. The presence of Tn916-like circular intermediates was determined by PCR. Antibiotic resistance was determined by the broth microdilution method and microarray hybridization. RESULTS: Sequencing of Tn6198 revealed that a 3.3 kb fragment containing dfrG was integrated between open reading frames 23 and 24 of Tn916. Furthermore, an additional copy of Tn916 was present in L. monocytogenes TTH-2007. Both elements were transferred simultaneously and separately in vitro to recipients L. monocytogenes 10403S and Enterococcus faecalis JH2-2 by conjugation, resulting in either tetracycline- and trimethoprim-resistant or solely tetracycline-resistant transconjugants. On the surface of cheese and salmon, only L. monocytogenes 10403S transconjugants were detected. CONCLUSIONS: This study reports the first Tn916-like element associated with a trimethoprim resistance gene, as well as the first fully characterized transposon conferring multidrug resistance in L. monocytogenes. This is of concern, as trimethoprim is administered to listeriosis patients with β-lactam allergy and as Tn6198 has a large potential for dissemination, indicated by both intra-species and inter-genus transfer.
Resumo:
In the past 2 decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDI-TOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed.
Resumo:
A total of 72 Lactococcus strains (41 Lactococcus lactis and 31 Lactococcus garvieae) isolated from bovine milk were tested for susceptibility to 17 antibiotics and screened for the presence of antibiotic resistance genes using a microarray. Resistance to tetracycline, clindamycin, erythromycin, streptomycin, nitrofurantoin were found. The tetracycline-resistant L. garvieae and L. lactis harbored tet(M) and tet(S). L. lactis that were resistant to clindamycin were also resistant to erythromycin and possessed the erm(B) gene. The multidrug transporter mdt(A), originally described in L. lactis, was detected for the first time in L. garvieae and does not confer decreased susceptibility to erythromycin nor tetracycline in this species. Mdt(A) of L. garvieae contains one mutation in each antiporter motif C, which is known to play an essential role in drug efflux antiporters. This suggests that the mutations found in the C-motifs of Mdt(A) from L. garvieae may be responsible for susceptibility. The study revealed the presence of antibiotic resistance genes in non-pathogenic and pathogenic lactococci from bovine milk, including a mutated multidrug transporter in L. garvieae.
Resumo:
Nutritive and therapeutic treatment of farm animals with antibiotics, amounting to half of the world's antibiotic output, has selected for resistant bacteria that may contaminate the food produced. Antibiotic-resistant enterococci and staphylococci from animals are found in food when they survive the production processes, as in raw cured sausages and raw milk cheeses1. The broad host ranges of some plasmids and the action of transposons in many bacteria allow antibiotic-resistance genes to be communicated by conjugation between different species and genera2,3. A multi-antibiotic resistance plasmid from a lactococcus found in cheese provides a historical record of such events.
Resumo:
INTRODUCTION blaOXA-48, blaNDM-1 and blaCTX-M-3 are clinically relevant resistance genes, frequently associated with the broad-host range plasmids of the IncL/M group. The L and M plasmids belong to two compatible groups, which were incorrectly classified together by molecular methods. In order to understand their evolution, we fully sequenced four IncL/M plasmids, including the reference plasmids R471 and R69, the recently described blaOXA-48-carrying plasmid pKPN-El.Nr7 from a Klebsiella pneumoniae isolated in Bern (Switzerland), and the blaSHV-5 carrying plasmid p202c from a Salmonella enterica from Tirana (Albania). METHODS Sequencing was performed using 454 Junior Genome Sequencer (Roche). Annotation was performed using Sequin and Artemis software. Plasmid sequences were compared with 13 fully sequenced plasmids belonging to the IncL/M group available in GenBank. RESULTS Comparative analysis of plasmid genomes revealed two distinct genetic lineages, each containing one of the R471 (IncL) and R69 (IncM) reference plasmids. Conjugation experiments demonstrated that plasmids representative of the IncL and IncM groups were compatible with each other. The IncL group is constituted by the blaOXA-48-carrying plasmids and R471. The IncM group contains two sub-types of plasmids named IncM1 and IncM2 that are each incompatible. CONCLUSION This work re-defines the structure of the IncL and IncM families and ascribes a definitive designation to the fully sequenced IncL/M plasmids available in GenBank.
Resumo:
The cell death response known as the hypersensitive response (HR) is a central feature of gene-for-gene plant disease resistance. A mutant line of Arabidopsis thaliana was identified in which effective gene-for-gene resistance occurs despite the virtual absence of HR cell death. Plants mutated at the DND1 locus are defective in HR cell death but retain characteristic responses to avirulent Pseudomonas syringae such as induction of pathogenesis-related gene expression and strong restriction of pathogen growth. Mutant dnd1 plants also exhibit enhanced resistance against a broad spectrum of virulent fungal, bacterial, and viral pathogens. The resistance against virulent pathogens in dnd1 plants is quantitatively less strong and is differentiable from the gene-for-gene resistance mediated by resistance genes RPS2 and RPM1. Levels of salicylic acid compounds and mRNAs for pathogenesis-related genes are elevated constitutively in dnd1 plants. This constitutive induction of systemic acquired resistance may substitute for HR cell death in potentiating the stronger gene-for-gene defense response. Although cell death may contribute to defense signal transduction in wild-type plants, the dnd1 mutant demonstrates that strong restriction of pathogen growth can occur in the absence of extensive HR cell death in the gene-for-gene resistance response of Arabidopsis against P. syringae.
Resumo:
The Bs2 resistance gene of pepper specifically recognizes and confers resistance to strains of Xanthomonas campestris pv. vesicatoria that contain the corresponding bacterial avirulence gene, avrBs2. The involvement of avrBs2 in pathogen fitness and its prevalence in many X. campestris pathovars suggests that the Bs2 gene may be durable in the field and provide resistance when introduced into other plant species. Employing a positional cloning strategy, the Bs2 locus was isolated and the gene was identified by coexpression with avrBs2 in an Agrobacterium-mediated transient assay. A single candidate gene, predicted to encode motifs characteristic of the nucleotide binding site–leucine-rich repeat class of resistance genes, was identified. This gene specifically controlled the hypersensitive response when transiently expressed in susceptible pepper and tomato lines and in a nonhost species, Nicotiana benthamiana, and was designated as Bs2. Functional expression of Bs2 in stable transgenic tomatoes supports its use as a source of resistance in other Solanaceous plant species.
Resumo:
Genetic changes in insects that lead to insecticide resistance include point mutations and up-regulation/amplification of detoxification genes. Here, we report a third mechanism, resistance caused by an absence of gene product. Mutations of the Methoprene-tolerant (Met) gene of Drosophila melanogaster result in resistance to both methoprene, a juvenile hormone (JH) agonist insecticide, and JH. Previous results have demonstrated a mechanism of resistance involving an intracellular JH binding protein that has reduced ligand affinity in Met flies. We show that a γ-ray induced allele, Met27, completely lacks Met transcript during the insecticide-sensitive period in development. Although Met27 homozygotes have reduced oogenesis, they are viable, demonstrating that Met is not a vital gene. Most target-site resistance genes encode vital proteins and thus have few mutational changes that permit both resistance and viability. In contrast, resistance genes such as Met that encode nonvital insecticide target proteins can have a variety of mutational changes that result in an absence of functional gene product and thus should show higher rates of resistance evolution.
Resumo:
The N gene, a member of the Toll-IL-1 homology region–nucleotide binding site–leucine-rich repeat region (LRR) class of plant resistance genes, encodes two transcripts, NS and NL, via alternative splicing of the alternative exon present in the intron III. The NS transcript, predicted to encode the full-length N protein containing the Toll-IL-1 homology region, nucleotide binding site, and LRR, is more prevalent before and for 3 hr after tobacco mosaic virus (TMV) infection. The NL transcript, predicted to encode a truncated N protein (Ntr) lacking 13 of the 14 repeats of the LRR, is more prevalent 4–8 hr after TMV infection. Plants harboring a cDNA-NS transgene, capable of encoding an N protein but not an Ntr protein, fail to exhibit complete resistance to TMV. Transgenic plants containing a cDNA-NS-bearing intron III and containing 3′ N-genomic sequences, encoding both NS and NL transcripts, exhibit complete resistance to TMV. These results suggest that both N transcripts and presumably their encoded protein products are necessary to confer complete resistance to TMV.
Resumo:
Sequences of cloned resistance genes from a wide range of plant taxa reveal significant similarities in sequence homology and structural motifs. This is observed among genes conferring resistance to viral, bacterial, and fungal pathogens. In this study, oligonucleotide primers designed for conserved sequences from coding regions of disease resistance genes N (tobacco), RPS2 (Arabidopsis) and L6 (flax) were used to amplify related sequences from soybean [Glycine max (L.) Merr.]. Sequencing of amplification products indicated that at least nine classes of resistance gene analogs (RGAs) were detected. Genetic mapping of members of these classes located them to eight different linkage groups. Several RGA loci mapped near known resistance genes. A bacterial artificial chromosome library of soybean DNA was screened using primers and probes specific for eight RGA classes and clones were identified containing sequences unique to seven classes. Individual bacterial artificial chromosomes contained 2-10 members of single RGA classes. Clustering and sequence similarity of members of RGA classes suggests a common process in their evolution. Our data indicate that it may be possible to use sequence homologies from conserved motifs of cloned resistance genes to identify candidate resistance loci from widely diverse plant taxa.
Resumo:
It has been proposed that cloned plant disease resistance genes could be transferred from resistant to susceptible plant species to control important crop plant diseases. The recently cloned N gene of tobacco confers resistance to the viral pathogen, tobacco mosaic virus. We generated transgenic tomato plants bearing the N gene and demonstrate that N confers a hypersensitive response and effectively localizes tobacco mosaic virus to sites of inoculation in transgenic tomato, as it does in tobacco. The ability to reconstruct the N-mediated resistance response to tobacco mosaic virus in tomato demonstrates the utility of using isolated resistance genes to protect crop plants from diseases, and it demonstrates that all the components necessary for N-mediated resistance are conserved in tomato.
Resumo:
Plants can recognize and resist invading pathogens by signaling the induction of rapid defense responses. Often these responses are mediated by single dominant resistance genes (R genes). The products of R genes have been postulated to recognize the pathogen and trigger rapid host defense responses. Here we describe isolation of the classical resistance gene N of tobacco that mediates resistance to the well-characterized pathogen tobacco mosaic virus (TMV). The N gene was isolated by transposon tagging using the maize Activator (Ac) transposon. We confirmed isolation of the N gene by complementation of the TMV-sensitive phenotype with a genomic DNA fragment. Sequence analysis of the N gene shows that it encodes a protein with an amino-terminal domain similar to that of the cytoplasmic domains of the Drosophila Toll protein and the interleukin 1 receptor in mammals, a putative nucleotide-binding site and 14 imperfect leucine-rich repeats. The presence of these functional domains in the predicted N gene product is consistent with the hypothesis that the N resistance gene functions in a signal transduction pathway. Similarities of N to Toll and the interleukin 1 receptor suggest a similar signaling mechanism leading to rapid gene induction and TMV resistance.
Resumo:
DNA probes from the L6 rust resistance gene of flax (Linum usitatissimum) hybridize to resistance genes at the unlinked M locus, indicating sequence similarities between genes at the two loci. Genetic and molecular data indicate that the L locus is simple and contains a single gene with 13 alleles and that the M locus is complex and contains a tandem array of genes of similar sequence. Thus the evolution of these two related loci has been different. The consequence of the contrasting structures of the L and M loci on the evolution of different rust resistance specificities can now be investigated at the molecular level
Resumo:
The inheritance of resistance to root-lesion nematode was investigated in five synthetic hexaploid wheat lines and two bread wheat lines using a half-diallel design of F-1 and F-2 crosses. The combining ability of resistance genes in the synthetic hexaploid wheat lines was compared with the performance of the bread wheat line 'GS50a', the source of resistance to Pratylenchus thornei used in Australian wheat breeding programmes. Replicated glasshouse trials identified P. thornei resistance as polygenic and additive in gene action. General combining ability (GCA) of the parents was more important than specific combining ability (SCA) effects in the inheritance of P. thornei resistance in both F-1 and F-2 populations. The synthetic hexaploid wheat line 'CPI133872' was identified as the best general combiner, however, all five synthetic hexaploid wheat lines possessed better GCA than 'GS50a'. The synthetic hexaploid wheat lines contain novel sources of P. thornei resistance that will provide alternative and more effective sources of resistance to be utilized in wheat breeding programmes.
Resumo:
The I-3 gene from the wild tomato species Lycopersicon pennellii confers resistance to race 3 of the devastating vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. As an initial step in a positional cloning strategy for the isolation of I-3, we converted restriction fragment length polymorphism and conserved orthologue set markers, known genes and a resistance gene analogue (RGA) mapping to the I-3 region into PCR-based sequence characterised amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers. Additional PCR-based markers in the I-3 region were generated using the randomly amplified DNA fingerprinting (RAF) technique. SCAR, CAPS and RAF markers were used for high-resolution mapping around the I-3 locus. The I-3 gene was localised to a 0.3-cM region containing a RAF marker, eO6, and an RGA, RGA332. RGA332 was cloned and found to correspond to a putative pseudogene with at least two loss-of-function mutations. The predicted pseudogene belongs to the Toll interleukin-1 receptor-nucleotide-binding site-leucine-rich-repeat sub-class of plant disease resistance genes. Despite the presence of two RGA332 homologues in L. esculentum, DNA gel blot and PCR analysis suggests that no other homologues are present in lines carrying I-3 that could be alternative candidates for the gene.