929 resultados para reservoir water level fluctuation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In a survey of the aquatic macrophytes of the Itaipu Reservoir, we identified 62 taxa in 25 families and 42 genera. The highest number taxa was observed for the emergent macrophytes (40 taxa). Reduced fluctuation in water level, increased light penetration, and sediment enrichment by nutrients and organic matter following the formation of the reservoir favored the appearance of a species-rich community of submerged macrophytes (23% of the taxa identified). The aquatic macrophytes were found mainly near the mouths of the main tributaries of the reservoir, in shallow area of depth less than 2 meters. In addition to the shallow depth, the greater nutrient input from the tributaries and relative protection from wind explained this distribution. Among the species found, Egeria najas merits mention for its occurrence in all localities sampled, with biomass values varying between 98 and 186 gDW/m2. Some potential nuisance species such as Eichhornia crassipes, Salvinia auriculata, and Pistia stratiotes also deserve attention, since they were also observed to be covering large areas of Itaipu Reservoir. © 1999, Paraná Institute of Technology Publication.
Resumo:
This PhD study examines whether water allocation becomes more productive when it is re-allocated from 'low' to 'high' efficient alternative uses in village irrigation systems (VISs) in Sri Lanka. Reservoir-based agriculture is a collective farming economic activity, which inter-sectoral allocation of water is assumed to be inefficient due to market imperfections and weak user rights. Furthermore, the available literature shows that a „head-tail syndrome. is the most common issue for intra-sectoral water management in „irrigation. agriculture. This research analyses the issue of water allocation by using primary data collected from two surveys of 460 rice farmers and 325 fish farming groups in two administrative districts in Sri Lanka. Technical efficiency estimates are undertaken for both rice farming and culture-based fisheries (CBF) production. The equi-marginal principle is applied for inter and intra-sectoral allocation of water. Welfare benefits of water re-allocation are measured through consumer surplus estimation. Based on these analyses, the overall findings of the thesis can be summarised as follows. The estimated mean technical efficiency (MTE) for rice farming is 73%. For CBF production, the estimated MTE is 33%. The technical efficiency distribution is skewed to the left for rice farming, while it skewed to the right for CBF production. The results show that technical efficiency of rice farming can be improved by formalising transferability of land ownership and, therefore, water user rights by enhancing the institutional capacity of Farmer Organisations (FOs). Other effective tools for improving technical efficiency of CBF production are strengthening group stability of CBF farmers, improving the accessibility of official consultation, and attracting independent investments. Inter-sectoral optimal allocation shows that the estimated inefficient volume of water in rice farming, which can be re-allocated for CBF production, is 32%. With the application of successive policy instruments (e.g., a community transferable quota system and promoting CBF activities), there is potential for a threefold increase in marginal value product (MVP) of total reservoir water in VISs. The existing intra-sectoral inefficient volume of water use in tail-end fields and head-end fields can potentially be removed by reducing water use by 10% and 23% respectively and re-allocating this to middle fields. This re-allocation may enable a twofold increase in MVP of water used in rice farming without reducing the existing rice output, but will require developing irrigation practices to facilitate this re-allocation. Finally, the total productivity of reservoir water can be increased by responsible village level institutions and primary level stakeholders (i.e., co-management) sharing responsibility of water management, while allowing market forces to guide the efficient re-allocation decisions. This PhD has demonstrated that instead of farmers allocating water between uses haphazardly, they can now base their decisions on efficient water use with a view to increasing water productivity. Such an approach, no doubt will enhance farmer incomes and community welfare.
Resumo:
The California Department of Fish and Game's Natural Stocks Assessment Project (NSAP) collected water quality data at high tides on a monthly basis from February 1991 to October 1994, and during low tides from March 1992 to June 1994 in the Klamath River estuary to describe water quality conditions. NSAP collected data on water temperature, dissolved oxygen, salinity, depth of saltwedge, and Klamath River flow. Klamath River flows ranged from 44.5 cubic meters per second (1570 cfs) in August 1994 to 3832.2 cubic meters per second (135,315 cfs) in March 1993. Saltwater was present in the estuary primarily in the summer and early fall and generally extended 2 to 3 miles upstream. Surface water temperatures ranged from 6-8° C in the winter to 20-24° C in the summer. Summer water temperatures within the saltwedge were generally 5 to 8° C cooler than the surface water temperature. Dissolved oxygen in the estuary was generally greater than 6 to 7 ppm year-round. A sand berm formed at the mouth of the river each year in the late summer or early fall which raised the water level in the estuary and reduced tidal fluctuation so that the Klamath estuary became essentially a lagoon. I hypothesize the formation of the sand berm may increase the production of the estuary and help provide favorable conditions for rearing juvenile chinook salmon.
Resumo:
It is often difficult to define ‘water quality’ with any degree of precision. One approach is that suggested by Battarbee (1997) and is based on the extent to which individual lakes have changed compared with their natural ‘baseline’ status. Defining the base-line status of artificial lakes and reservoirs however, is, very difficult. In ecological terms, the definition of quality must include some consideration of their functional characteristics and the extent to which these characteristics are self-sustaining. The challenge of managing lakes in a sustainable way is particularly acute in semi-arid, Mediterranean countries. Here the quality of the water is strongly influenced by the unpredictability of the rainfall as well as year-to-year variations in the seasonal averages. Wise management requires profound knowledge of how these systems function. Thus a holistic approach must be adopted and the factors influencing the seasonal dynamics of the lakes quantified over a range of spatial and temporal scales. In this article, the authors describe some of the ways in which both long-term and short-term changes in the weather have influenced the seasonal and spatial dynamics of phytoplankton in El Gergal, a water supply reservoir situated in the south of Spain. The quality of the water stored in this reservoir is typically very good but surface blooms of algae commonly appear during warm, calm periods when the water level is low. El Gergal reservoir is managed by the Empresa Municipal de Abastecimiento y Saneamiento (EMASESA) and supplies water for domestic, commercial and industrial use to an area which includes the city of Seville and twelve of its surrounding towns (ca. 1.3 million inhabitants). El Gergal is the last of two reservoirs in a chain of four situated in the Rivera de Huelva basin, a tributary of the Guadalquivir river. It was commissioned by EMASESA in 1979 and since then the company has monitored its main limnological parameters on, at least, a monthly basis and used this information to improve the management of the reservoir. As a consequence of these intensive studies the physical, chemical and biological information acquired during this period makes the El Gergal database one of the most complete in Spain. In this article the authors focus on three ‘weather-related’ effects that have had a significant impact on the composition and distribution of phytoplankton in El Gergal: (i) the changes associated with severe droughts; (ii) the spatial variations produced by short-term changes in the weather; (iii) the impact of water transfers on the seasonal dynamics of the dinoflagellate Ceratium.
Resumo:
Gandhisagar, the second largest reservoir of India is located in Mandsaur district of Madhya Pradesh at latitude 24°44'N and longitude 75°33'E at an altitude of 403.56m MSL in orientation from NE to SE. It has an extensive water spread area of 66000 ha at full reservoir level with a maximum and mean depth of 49.52 and 11.73 m respectively. The maximum length and width of the reservoir are 112 and 16km having a total shore line of 442km. Details of catchment area, bathymetry, standard hydrological data giving water level relation of the basin to water spread area, volume and fish production and the bottom topographical details of 11 experimental fishing stations and 6 fish landing centres are discussed.
Resumo:
A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.
Resumo:
Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) were measured in the water column from Three Gorges Reservoir (TGR) collected in May 2008 using semipermeable membrane devices (SPMDs). The sampling sites spanned the whole reservoir from the upstream Chongqing to the great dam covering more than 600 km long distance with water flow velocities ranging from <0.05 to 1.5 m s(-1). This is the first experience of SPMD application in the biggest reservoir in the world. The results of water sampling rates based on performance reference compounds (PRC) were tested to be significantly correlated with water flow velocities in the big river. Results of back-calculated aqueous concentrations based on PRC showed obvious regional variations of PAH, PCB and OCP levels in the reservoir. Total PAH ranged from 13.8 to 97.2 ng L-1, with the higher concentrations occurring in the region of upstream and near the dam. Phenanthrene, fluoranthene, pyrene and chrysene were the predominant PAH compounds in TGR water. Total PCB ranged from 0.08 to 0.51 ng L-1, with the highest one occurring in the region near the dam. PCB 28, 52, 101, 138, 153, 180, 118 were the most abundant PCB congeners in the water. The total OCP ranged from 2.33 to 3.60 ng L-1 and the levels showed homogenous distribution in the whole reservoir. HCH, DDT and HCB, PeCB were the major compounds of OCP fingerprints. Based on water quality criteria, the TGR water could be designated as being polluted by HCB and PAH. Data on PAH, PCB and OCP concentrations found in this survey can be used as reference levels for future POP monitoring programmes in TGR. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Three lacustrine core samples were collected from Chaohu lake in December 2002 in the Yangtze delta region. The grain sizes were analyzed using a Laser Analyzer to obtain grain-size parameters. Sediment geochronology was determined in radioisotopes Cs-137 and the average sedimentary rates are 0.29cm.a(-1), 0.35 cm.a(-1) and 0.24cm-a(-1) in Cores C 1, C2 and C3, respectively. The grain-size parameters of the deposits vary regularly with the fluctuation of hydrodynamics. From 1950s to the beginning of 20th century, coarse-grained sediment was deposited, suggesting strong hydraulic conditions and high water-level periods with much precipitation; from the start of 20(th) century to latter half of 18(th) century, fine-grained sediment was deposited, indicating that weak hydraulic conditions and low water-level periods with less precipitation; before the first half of 18(th) century, coarse-grained sediment was deposited, suggesting great velocity of flow and high water-level periods of more precipitation.
Resumo:
Salt water intrusion occurred frequently during dry season in Modaomen waterway of the Pearl River Estuary. With the development of region's economy and urbanization, the salt tides affect the region's water supply more and more seriously in recent years. Regulation and allocation of freshwater resources of the upper rivers of the estuary to suppress the salt tides is becoming important measures for ensuring the water supply security of the region in dry season. The observation data analysis showed that the flow value at the Wuzhou hydrometric station on the upper Xijiang river had a good correlation with the salinity in Modaomen estuary. Thus the flow rate of Wuzhou has been used as a control variable for suppression of salt tides in Modaomen estuary. However, the runoff at Wuzhou mainly comes from the discharge of Longtan reservoir on the upper reaches of Xijiang river and the runoff in the interval open valley between Longtan and Wuzhou sections. As the long distance and many tributaries as well as the large non-controlled watershed between this two sections, the reservoir water scheduling has a need for reasonable considering of interaction between the reservoir regulating discharge and the runoff process of the interval open watershed while the deployment of suppression flow at Wuzhou requires longer lasting time and high precision for the salt tide cycles. For this purpose, this study established a runoff model for Longtan - Wuzhou interval drainage area and by model calculations and observation data analysis, helped to understand the response patterns of the flow rate at Wuzhou to the water discharge of Longtan under the interval water basin runoff participating conditions. On this basis, further discussions were taken on prediction methods of Longtan reservoir discharge scheduling scheme for saline intrusion suppression and provided scientific and typical implementation programs for effective suppression flow process at the Wuzhou section.
Resumo:
Despite fractured hard rock aquifers underlying over 65% of Ireland, knowledge of key processes controlling groundwater recharge in these bedrock systems is inadequately constrained. In this study, we examined 19 groundwater-level hydrographs from two Irish hillslope sites underlain by hard rock aquifers. Water-level time-series in clustered monitoring wells completed at the subsoil, soil/bedrock interface, shallow and deep bedrocks were continuously monitored hourly over two hydrological years. Correlation methods were applied to investigate groundwater-level response to rainfall, as well as its seasonal variations. The results reveal that the direct groundwater recharge to the shallow and deep bedrocks on hillslope is very limited. Water-level variations within these geological units are likely dominated by slow flow rock matrix storage. The rapid responses to rainfall (⩽2 h) with little seasonal variations were observed to the monitoring wells installed at the subsoil and soil/bedrock interface, as well as those in the shallow or deep bedrocks at the base of the hillslope. This suggests that the direct recharge takes place within these units. An automated time-series procedure using the water-table fluctuation method was developed to estimate groundwater recharge from the water-level and rainfall data. Results show the annual recharge rates of 42–197 mm/yr in the subsoil and soil/bedrock interface, which represent 4–19% of the annual rainfall. Statistical analysis of the relationship between the rainfall intensity and water-table rise reveal that the low rainfall intensity group (⩽1 mm/h) has greater impact on the groundwater recharge rate than other groups (>1 mm/h). This study shows that the combination of the time-series analysis and the water-table fluctuation method could be an useful approach to investigate groundwater recharge in fractured hard rock aquifers in Ireland.
Resumo:
The Castanhao reservoir was built in the state of Ceara, a dry region in Northeastern Brazil, to regulate the flow of the Jaguaribe River, for irrigation, and for power generation. It is an earth-filled dam, 60 m high, with a water capacity of 4.5 x 10(9) m(3). The seismicity in the area has been monitored since 1998, with a few interruptions, using one analog or one digital station and, during a few periods, a three-station network. The first earthquakes likely to be induced events were detected in 2003, when the water level was about 20 in high. In early 2004 a very heavy rainfall season quickly filled the reservoir. Shortly after, an increase in the seismic activity occurred and many micro-earthquakes were recorded. We suggest that this activity resulted from an increase in pore pressure due to undrained response. Therefore, we may classify this cluster of microearthquakes as ""initial seismicity."" We deployed a network with four analog stations in the area, following this activity, to determine the epicentral zone. At least three epicentral areas under the reservoir were detected. The spatio-temporal analysis of the available data revealed that the seismicity occurs in clusters and that these were activated at different periods. We identified four sets of faults (N-S-, E-W-, NW-SE-, and NE-SW-oriented), some of which moved in shallow crustal levels and as recently as the Quaternary (1.8 Ma). Under the present-day stress regime, the last two sets moved as strike-slip structures. We suggest a possible correlation between dormant faults and the observed induced seismicity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A descriptive analysis of the responses of plankton from lakes lateral to a river in its mouth zone into a tropical reservoir to water level variations is presented. Three situations were reported: 1) a comparison of species richness and diversity and of algae population abundance in prolonged drought and in periods of connection of lakes to the river, 2) the spatial distribution of abundance and richness of Rotifera species in four isolated water bodies formed by fragmentation of a lateral lake during a period of prolonged drought and in the same areas during a period of integrity as an ecosystem, 3) the variability of total zooplankton and Cladocera densities at the end of the isolation period of a lateral lake and after the recovery of connection with the river and in a year of continuous connection with the lotic ecosystem. Various idiosyncrasies were observed in connected lateral lakes, like the surface hydrologic connectivity, a primary factor in species richness modifcations and a secondary controlling factor of plankton abundance. Underground hydrologic connectivity, through the river[forward arrow] lake water fux during the high-water period and lake [forward arrow] river during drought period, appears to have an important role in richness and abundance variations of planktonic populations in the lake isolated from the river.