997 resultados para renal fibrosis
Resumo:
The real role of renal transplantation in hepatic fi brosis progression caused by hepatitis C virus is still unpredictable. Histological evaluation of the liver is the best form to estimate fi brosis evolution, although semiquantitative analysis carries important limitations. Objective: To apply a morphometric quantitative assay on hepatic fi brosis progression in renal recipients with hepatits C. Methods: Thirty patients were initially evaluated, but only seven were included. They underwent the fi rst biopsy near the transplantation date and the second biopsy at least 4 years later. The immunosuppressant therapy adopted in all cases was azatioprine and micofenolate. Fibrosis progression rate (FPR) was calculated before and after the surgery date in each patient according to Metavir score and morphometric analysis. Results: The FPR calculated by Metavir score showed no statistical difference between pre- and post-transplantation (p=0.9). The FPR calculated by the morphometric analysis was 0.58 ± 0.78 before transplantation and 3.0 ± 3.3 after the surgery, with statistical signi- fi cance between these values (p=0.0026). Conclusion: In the sample assessed, the progression of hepatic fi brosis was documented and quantifi ed only by the morphometric analysis, which is as a promising approach to histological evaluation of these patients.
Resumo:
Cyclosporine (CsA) remains an important immunosuppressant for transplantation and for treatment of autoimmune diseases. The most troublesome side effect of CsA is renal injury. Acute CsA-induced nephrotoxicity is characterized by reduced renal blood flow (RBF) and glomerular filtration rate (GFR) due to afferent arteriole vasoconstriction. Annexin A1 (ANXA1) is a potent anti-inflammatory protein with protective effect in renal ischemia/reperfusion injury. Here we study the effects of ANXA1 treatment in an experimental model of acute CsA nephrotoxicity. Salt-depleted rats were randomized to treatment with VH (vehicles 1 mL/kg body weight/day), ANXA1 (Ac2-26 peptide 1 mg/kg body weight/day intraperitoneally), CsA (20 mg/kg body weight/day subcutaneously) and CsA + ANXA1 (combination) for seven days. We compared renal function and hemodynamics, renal histopathology, renal tissue macrophage infiltration and renal ANXA1 expression between the four groups. CsA significantly impaired GFR and RBF, caused tubular dilation and macrophage infiltration and increased ANXA1 renal tissue expression. Treatment with ANXA1 attenuated CSA-induced hemodynamic changes, tubular injury and macrophage infiltration. ANXA1 treatment attenuated renal hemodynamic injury and inflammation in an acute CsA nephrotoxicity model.
Resumo:
The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC). Male Wistar rats were submitted to 5/6 nephrectomy (Nx) to induced CRF. An ionic - cyclic Gd (Gadoterate Meglumine) was administrated (1.5 mM/KgBW, intravenously) 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd-chelate administration: 1 - Nx (n = 7); 2 - Nx+NAC (n = 6); 3 - Nx+Gd (n = 7); 4 - Nx+NAC+Gd (4.8 g/L in drinking water), initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6). This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW), proteinuria (mg/24 hs), serum iron (mu g/dL); serum ferritin (ng/mL); transferrin saturation (%), TIBC (mu g/dL) and TBARS (nmles/ml). Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.
Resumo:
OBJECTIVE To assess the effects of atorvastatin (ATORV) on renal function after bilateral ureteral obstruction (BUO), measuring inulin clearance and its effect on renal hemodynamic, filtration, and inflammatory response, as well as the expression of Aquaporin-2 (AQP2) in response to BUO and after the release of BUO. METHODS Adult Munich-Wistar male rats were subjected to BUO for 24 hours and monitored during the following 48 hours. Rats were divided into 5 groups: sham operated (n = 6); sham + ATORV (n = 6); BUO (n = 6); BUO + ATORV (10 mg/kg in drinking water started 2 days before BUO [n = 5]; and BUO + ATORV (10 mg/kg in drinking water started on the day of the release of BUO [n = 5]). We measured blood pressure (BP, mm Hg); inulin clearance (glomerular filtration rate [GFR]; mL/min/100 g); and renal blood flow (RBF, mL/min, by transient-time flowmeter). Inflammatory response was evaluated by histologic analysis of the interstitial area. AQP2 expression was evaluated by electrophoresis and immunoblotting. RESULTS Renal function was preserved by ATORV treatment, even if initiated on the day of obstruction release, as expressed by GFR, measured by inulin clearance. Relative interstitial area was decreased in both BUO + ATORV groups. Urine osmolality was improved in the ATORV-treated groups. AQP2 protein expression decreased in BUO animals and was reverted by ATORV treatment. CONCLUSION ATORV administration significantly prevented and restored impairment in GFR and renal vascular resistance. Furthermore, ATORV also improved urinary concentration by reversing the BUO-induced downregulation of AQP2. These findings have significant clinical implication in treating obstructive nephropathy. UROLOGY 80: 485.e15-485.e20, 2012. (c) 2012 Elsevier Inc.
Resumo:
Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1β, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.
Resumo:
Eliminadas las páginas en blanco
Resumo:
The purpose was to retrospectively review the data of 27 patients with renal insufficiency who underwent conventional angiography with gadolinium-based contrast agents (GDBCA) as alternative contrast agents and assess the occurrence of nephrogenic systemic fibrosis (NSF) together with associated potential risk factors.
Resumo:
Metzincins and functionally related genes play important roles in extracellular matrix remodeling both in healthy and fibrotic conditions. We recently presented a transcriptomic classifier consisting of 19 metzincins and related genes (MARGS) discriminating biopsies from renal transplant patients with or without interstitial fibrosis/tubular atrophy (IF/TA) by virtue of gene expression measurement (Roedder et al., Am J Transplant 9:517-526, 2009). Here we demonstrate that the same algorithm has diagnostic value in non-transplant solid organ fibrosis. We used publically available microarray datasets of 325 human heart, liver, lung, kidney cortex, and pancreas microarray samples (265 with fibrosis, 60 healthy controls). Expression of nine commonly differentially expressed genes was confirmed by TaqMan low-density arrays (Applied Biosystems, USA) in 50 independent archival tissue specimens with matched histological diagnoses to microarray patients. In separate and in combined, integrated microarray data analyses of five datasets with 325 samples, the previously published MARGS classifier for renal post-transplant IF/TA had a mean AUC of 87% and 82%, respectively. These data demonstrate that the MARGS gene panel classifier not only discriminates IF/TA from normal renal transplant tissue, but also classifies solid organ fibrotic conditions of human pancreas, liver, heart, kidney, and lung tissue samples with high specificity and accuracy, suggesting that the MARGS classifier is a cross-platform, cross-organ classifier of fibrotic conditions of different etiologies when compared to normal tissue.
Resumo:
BACKGROUND: Cystic fibrosis (CF) is characterized by chronic bacterial broncho-pulmonary infection. Although intravenous (IV) antibiotic therapy is regarded as standard treatment in CF, only few randomised trials comparing different antibiotic compounds exist. METHODS: We report on a prospective multicenter interventional trial of IV meropenem (120 mg/kg/day) or IV ceftazidime (200-400 mg/kg/day), each administered together with IV tobramycin (9-12 mg/kg/day). Outcome measures were changes in lung function, microbiological sputum burden and blood inflammatory marker. Liver and renal function values were measured to assess safety. RESULTS: One hundred eighteen patients (59/59) were included into the study with the following indications: first infection of P. aeruginosa (n=6), acute pulmonary exacerbation (n=34) and suppression therapy of chronic P. aeruginosa colonization (n=78). Both treatments improved lung function measures, bacterial sputum burden and CRP levels with no differences between treatment groups observed. A significant higher elevation for alkaline phosphatase (p<0.0001) was observed for patients in the meropenem/tobramycin group. CONCLUSIONS: IV antibiotic therapy in CF patients with meropenem/tobramycin is as effective as with ceftazidime/tobramycin regarding lung function, microbiological sputum burden and systemic inflammatory status. Hepato-biliary function should be monitored carefully during IV treatment, possibly important in CF patients with pre-existing liver disease.
Resumo:
Chronic renal allograft injury is often reflected by interstitial fibrosis (IF) and tubular atrophy (TA) without evidence of specific etiology. In most instances, IF/TA remains an irreversible disorder, representing a major cause of long-term allograft loss. As members of the protease family metzincins and functionally related genes are involved in fibrotic and sclerotic processes of the extracellular matrix (ECM), we hypothesized their deregulation in IF/TA. Gene expression and protein level analyses using allograft biopsies with and without Banff'05 classified IF/TA illustrated their deregulation. Expression profiles of these genes differentiated IF/TA from Banff'05 classified Normal biopsies in three independent microarray studies and demonstrated histological progression of IF/TA I to III. Significant upregulation of matrix metalloprotease-7 (MMP-7) and thrombospondin-2 (THBS-2) in IF/TA biopsies and sera was revealed in two independent patient sets. Furthermore, elevated THBS-2, osteopontin (SPP1) and beta-catenin may play regulatory roles on MMP. Our findings further suggest that deregulated ECM remodeling and possibly epithelial to mesenchymal transition (EMT) are implicated in IF/TA of kidney transplants, and that metzincins and related genes play an important role in these processes. Profiling of these genes may be used to complement IF/TA diagnosis and to disclose IF/TA progression in kidney transplant recipients.
Resumo:
BACKGROUND The metabolism of sodium, potassium, and chloride and the acid-base balance are sometimes altered in cystic fibrosis. Textbooks and reviews only marginally address the homeostasis of magnesium in cystic fibrosis. METHODS We performed a search of the Medical Subject Headings terms (cystic fibrosis OR mucoviscidosis) AND (magnesium OR hypomagnes[a]emia) in the US National Library of Medicine and Excerpta Medica databases. RESULTS We identified 25 reports dealing with magnesium and cystic fibrosis. The results of the review may be summarized as follows. First, hypomagnesemia affects more than half of the cystic fibrosis patients with advanced disease; second, magnesemia, which is normally age-independent, relevantly decreases with age in cystic fibrosis; third, aminoglycoside antimicrobials frequently induce both acute and chronic renal magnesium-wasting; fourth, sweat magnesium concentration was normal in cystic fibrosis patients; fifth, limited data suggest the existence of an impaired intestinal magnesium balance. Finally, stimulating observations suggest that magnesium supplements might achieve an improvement in respiratory muscle strength and mucolytic activity of both recombinant and endogenous deoxyribonuclease. CONCLUSIONS The first comprehensive review of the literature confirms that, despite being one of the most prevalent minerals in the body, the importance of magnesium in cystic fibrosis is largely overlooked. In these patients, hypomagnesemia should be sought once a year. Furthermore, the potential of supplementation with this cation deserves more attention.
Resumo:
La nefropatía obstructiva puede ser un desorden renal complejo de tratar debido al severo cuadro inflamatorio, desbalance oxidativo, apoptosis y fibrosis. Estudios previos sostienen que rosuvastatina (Ros) podría tener utilidad como una opción terapéutica en enfermedades renales que cursarían con apoptosis y fibrosis. Objetivo: Evaluar los posibles efectos antiapoptóticos y antifibróticos de Ros durante la obstrucción ureteral unilateral en ratas neonatas. Materiales y Métodos: Ratas Wistar neonatas de 48 hs. de vida fueron intervenidas quirúrgicamente (grupo experimental) o no (grupo control). Ambos grupos fueron subdivididos en tratadas o no tratadas con Ros (10mg / kg por día) vía oral durante 14 días. Posteriormente se procedió a nefrectomizar y procesar las cortezas renales para determinar por RT-PCR las expresiones de genes: óxido nítrico sintasa inducible (iNOS), factor promotor génico de chaperonas (hsf1), proteína de shock térmico (hsp70), bax, bcL2, wt1, p53, snail, proteína morfogénica del hueso (bmp7), caderina E, factor transformador de crecimiento (tgf-β) y factor de necrosis tumoral (tnf-α). Resultados: La obstrucción ureteral unilateral neonatal indujo una marcada fibrosis y apoptosis, mientras que el tratamiento con Ros moduló el patrón de genes fibróticos y apoptóticos mediante disminución de la expresión de bmp7, caderina E, wt1, p53 y bcl2; además indujo una caída en la expresión de los genes profibróticos y proapoptóticos (bax, tnf-α y tgf-β). El análisis de los resultados presentados, permiten sugerir que la protección renal de rosuvastatina durante nefropatía obstructiva de ratas neonatas estaría asociado a la interacción entre hsp70 y la biodisponibilidad del óxido nítrico con el concomitante descenso en genes pro-apoptóticos.
Resumo:
In recent years, an increasing percentage of people from industrialized countries have been using complementary and alternative medicines (CAM). This, combined with numerous warnings regarding the potential toxicity of these therapies, suggests the need for practitioners to keep abreast of the reported incidence of renal toxicity caused by the ingestion of medicinal herbs. The goal of the present two-part series, on the toxic or beneficial effects of medicinal herbs on renal health, is to provide practitioners with a summary of the most recent information as well as the means by which evidence for benefit or toxicity has been found. In this first article, we explore in vivo evidence of toxicity. Included are nephrotoxicity from aristolochic acid and other components within herbs, herb-drug interactions resulting in adverse renal effects, and renal toxicity from contaminants within the extracts. The review aims to provide a guide to encourage future toxicity studies and rigorous clinical trials.
Resumo:
Postprandial hyperglycemia is implicated as a risk factor predisposing to vascular complications. This study was designed to assess recurrent short-term increases in glucose on markers of renal fibrogenesis. Human renal cortical fibroblasts were exposed to fluctuating short-term (2 h) increases to 15 mM D-glucose, three times a day over 72 h, on a background of 5 mM D-glucose. To determine whether observed changes were due to fluctuating osmolality, identical experiments were undertaken with cells exposed to L-glucose. Parallel experiments were performed in cells exposed to 5 mM D-glucose and constant exposure to either 15 or 7.5 mM D-glucose. Fluctuating D-glucose increased extracellular matrix, as measured by proline incorporation ( P < 0.05), collagen IV ( P < 0.005), and fibronectin production ( P < 0.001), in association with increased tissue inhibitor of matrix metalloproteinase (MMP) ( P < 0.05). Sustained exposure to 15 mM D-glucose increased fibronectin ( P < 0.001), in association with increased MMP-2 ( P = 0.01) and MMP-9 activity ( P < 0.05), suggestive of a protective effect on collagen matrix accumulation. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA was increased after short-term (90 min) exposure to 15 mM glucose (P < 0.05) and after 24-h exposure to 7.5 mM ? ( P < 0.05). Normalization of TGF-beta(1) secretion occurred within 48 h of constant exposure to an elevated glucose. Fluctuating L-glucose also induced TGF-beta(1) mRNA and a profibrotic profile, however, to a lesser extent than observed with exposure to fluctuating D-glucose. The results suggest that exposure to fluctuating glucose concentrations increases renal interstitial fibrosis compared with stable elevations in D-glucose. The effects are, in part, due to the inherent osmotic changes.
Resumo:
ABSTRACT. Experimental renal scarring indicates that tissue transglutaminase (tTg) may be associated with the accumulation of extracellular matrix (ECM), both indirectly via TGF-β1 activation and directly by the formation of ε(γ-glutamyl) lysine dipeptide bonds within the ECM. The latter potentially accelerates deposition and confers the ECM with resistance to proteolytic digestion. Studied were 136 human renal biopsy samples from a range of chronic renal diseases (CRD) to determine changes in tTg and ε(γ-glutamyl) lysine crosslinking. Immunofluorescence for insoluble tTg showed a 14-fold increase in the kidneys of CRD patients (5.3 ± 0.5 versus 76 ± 54 mV/cm2), which was shown to be active by a similar 11-fold increase in the ε(γ-glutamyl) lysine crosslink (1.8 ± 0.2 versus 19.3 ± 14.2 mV/cm2). Correlations were obtained with renal function for tTg and crosslink. In situ hybridization for tTg mRNA showed that tubular epithelial cells were the major source of tTg; however, both mesangial and interstitial cells also contributed to elevated levels in CRD. This mRNA pattern was consistent with immunohistochemistry for soluble tTg. Changes in renal tTg and its product, the ε(γ-glutamyl) lysine crosslink, occur in progressive renal scarring in humans independently of the original etiology and in a similar manner to experimental models. tTg may therefore play a role in the pathogenesis of renal scarring and fibrosis in patients with CRD and can therefore be considered a potential therapeutic target. E-mail: T.Johnson@sheffield.ac.uk