404 resultados para regularization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to perform a thorough comparison of quantitative susceptibility mapping (QSM) techniques and their dependence on the assumptions made. The compared methodologies were: two iterative single orientation methodologies minimizing the l2, l1TV norm of the prior knowledge of the edges of the object, one over-determined multiple orientation method (COSMOS) and anewly proposed modulated closed-form solution (MCF). The performance of these methods was compared using a numerical phantom and in-vivo high resolution (0.65mm isotropic) brain data acquired at 7T using a new coil combination method. For all QSM methods, the relevant regularization and prior-knowledge parameters were systematically changed in order to evaluate the optimal reconstruction in the presence and absence of a ground truth. Additionally, the QSM contrast was compared to conventional gradient recalled echo (GRE) magnitude and R2* maps obtained from the same dataset. The QSM reconstruction results of the single orientation methods show comparable performance. The MCF method has the highest correlation (corrMCF=0.95, r(2)MCF =0.97) with the state of the art method (COSMOS) with additional advantage of extreme fast computation time. The l-curve method gave the visually most satisfactory balance between reduction of streaking artifacts and over-regularization with the latter being overemphasized when the using the COSMOS susceptibility maps as ground-truth. R2* and susceptibility maps, when calculated from the same datasets, although based on distinct features of the data, have a comparable ability to distinguish deep gray matter structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Darmouth College, from august 2007 until february 2008. It has been very successful, from different viewpoints: scientific, philosophical, human. We have definitely advanced, during the past six months, towards the comprehension of the behaviour of the fluctuations of the quantum vacuum in the presence of boundaries, moving and non-moving, and also in situations where the topology of space-time changes: the dynamical Casimir effect, regularization problems, particle creation statistics, according to different BC, etc. We have solved some longstanding problems and got in this subject quite remarkable results (as we will explain in more detail below). We also pursued a general approach towards a viable modified f(R) gravity in both the Jordan and the Einstein frames (which are known to be mathematically equivalent, but physically not so). A class of exponential, realistic modified gravities has been introduced by us and investigated with care. Special focus was made on step-class models, most promising from the phenomenological viewpoint and which provide a natural way to classify all viable modified gravities. One- and two-steps models were considered, but the analysis is extensible to N-step models. Both inflation in the early universe and the onset of recent accelerated expansion arise in these models in a natural, unified way, what makes them very promising. Moreover, it is monstrated in our work that models in this category easily pass all local tests, including stability of spherical body solution, non-violation of Newton's law, and generation of a very heavy positive mass for the additional scalar degree of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada a la University of Groningen, Holanda, entre 2007 i 2009. La simulació directa de la turbulència (DNS) és una eina clau dins de la mecànica de fluids computacional. Per una banda permet conèixer millor la física de la turbulència i per l'altra els resultats obtinguts són claus per el desenvolupament dels models de turbulència. No obstant, el DNS no és una tècnica vàlida per a la gran majoria d'aplicacions industrials degut al elevats costos computacionals. Per tant, és necessari cert grau de modelització de la turbulència. En aquest context, s'han introduïts importants millores basades en la modelització del terme convectiu (no lineal) emprant symmetry-preserving regularizations. En tracta de modificar adequadament el terme convectiu a fi de reduir la producció d'escales més i més petites (vortex-stretching) tot mantenint tots els invariants de les equacions originals. Fins ara, aquest models s'han emprat amb èxit per nombres de Rayleigh (Ra) relativament elevats. En aquest punt, disposar de resultats DNS per a configuracions més complexes i nombres de Ra més elevats és clau. En aquest contexte, s'han dut a terme simulacions DNS en el supercomputador MareNostrum d'una Differentially Heated Cavity amb Ra=1e11 i Pr=0.71 durant el primer any dels dos que consta el projecte. A més a més, s'ha adaptat el codi a fi de poder simular el fluxe al voltant d'un cub sobre una pared amb Re=10000. Aquestes simulacions DNS són les més grans fetes fins ara per aquestes configuracions i la seva correcta modelització és un gran repte degut la complexitat dels fluxes. Aquestes noves simulacions DNS estan aportant nous coneixements a la física de la turbulència i aportant resultats indispensables per al progrés de les modelitzacións tipus symmetry-preserving regularization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Durant els últims anys al tram final del riu Ebre s’han produit canvis molt importants a l’ecosistema fluvial: l’augment de la transparència de l’aigua ha comportat una proliferació massiva de macròfits que ha provocat canvis en l’estructura tròfica i en la composició de les comunitats biològiques, representant un greu perill per espècies amenaçades com Margaritifera auricularia. A més del problema ecològic, els macròfits estan provocant molts problemes socio-econòmics perjudicant les captacions d’aigua (centrals nuclears, hidroelèctriques i regadius), creant problemes per a la navegació fluvial, i afavorint la proliferació d’espècies molestes com la mosca negra (Simulium erythrocephalum). Entre les diferents causes que podrien explicar aquests canvis en l’ecosistema hi ha: la disminució del fòsfor dissolt, la regularització i la disminució de cabals, i l’aparició d’espècies introduides com el musclo zebra. Segurament es tractarà d’un efecte combinat de les diferents causes però és necessari analitzar-les per tal de conèixer quines tenen més incidència i així, poder proposar mesures de gestió per als problemes ecològics que pateix el tram final de l’Ebre. Al present projecte de tesi (inclós en el projecte d’I+D: efectes de la millora de la qualitat de l'aigua i de l'alteració del règim de cabals sobre les comunitats biològiques del tram final del riu Ebre) s’estudiarà la comunitat de macròfits i macroinvertebrats associats per tal de determinar el paper que tenen en el canvis que s’han produit al riu durant els últims anys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Crosslinking of corneal collagen with riboflavin and ultraviolet-A irradiation (CXL) induces crosslinks within and between collagen fibers. CXL increases corneal biomechanical and biochemical stability and is currently used clinically to treat keratectasia. CXL also significantly reduces the stromal swelling capacity. We investigated whether a modified CXL treatment protocol would be beneficial in early Fuchs' dystrophy with various degrees of corneal edema and diurnal variations in visual acuity. Methods: CXL was performed as published previously with the following modification: in cases where the stroma was thicker than 450 µm after abrasion and 30 minutes of instillation of isoosmolar riboflavin solution, glycerol 70% solution was applied every 5 seconds for two minutes, and central corneal thickness (CCT) was measured using ultrasound pachymetry. Glycerol 70% solution was administered repeatedly until the target corneal thickness of 370-430 µm was reached. During irradiation, CCT was monitored by ultrasound pachymetry every five minutes and glycerol 70% solution was applied, if necessary. Results: Three eyes in two patients were treated using the modified CXL protocol. Representative case: a 50-year-old woman with Fuchs' dystrophy and a history of 3 years of diurnal visual fluctuations was referred to us in March 2008. Preoperative best spectacle-corrected visual acuity (BSCVA) was 20/50. We performed modified CXL in the left eye. At one month after CXL, Scheimpflug analysis of CCT showed a reduction of more than 100 µm, and the Corneal Thickness Spatial Profile (CTSP) and Percentage of Increase in Thickness (PIT) showed a regularization of the "flattening" typical for Fuchs' dystrophy. Accordingly, diurnal analysis of corneal thickness showed a distinct postoperative reduction in CCT at all time points measured. At one month after CXL, the patient reported a reduction of diurnal visual fluctuations and we measured an increase in BSCVA to 20/32. The patient showed stable topographical and visual acuity at the three months follow-up. Conclusions: We saw a distinct reduction in CCT, an improvement of the corneal thickness spatial profile (CTSP) and an increase in BSCVA at one month after treatment, which remained stable at the three months follow-up. Patients with early Fuchs' dystrophy and disturbing diurnal visual fluctuations represent a novel application for CXL. Although CXL may not prevent the outcome of the dystrophy, it may increase the patients' visual comfort until keratoplasty becomes necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new registration algorithm, called Temporal Di eomorphic Free Form Deformation (TDFFD), and its application to motion and strain quanti cation from a sequence of 3D ultrasound (US) images. The originality of our approach resides in enforcing time consistency by representing the 4D velocity eld as the sum of continuous spatiotemporal B-Spline kernels. The spatiotemporal displacement eld is then recovered through forward Eulerian integration of the non-stationary velocity eld. The strain tensor iscomputed locally using the spatial derivatives of the reconstructed displacement eld. The energy functional considered in this paper weighs two terms: the image similarity and a regularization term. The image similarity metric is the sum of squared di erences between the intensities of each frame and a reference one. Any frame in the sequence can be chosen as reference. The regularization term is based on theincompressibility of myocardial tissue. TDFFD was compared to pairwise 3D FFD and 3D+t FFD, bothon displacement and velocity elds, on a set of synthetic 3D US images with di erent noise levels. TDFFDshowed increased robustness to noise compared to these two state-of-the-art algorithms. TDFFD also proved to be more resistant to a reduced temporal resolution when decimating this synthetic sequence. Finally, this synthetic dataset was used to determine optimal settings of the TDFFD algorithm. Subsequently, TDFFDwas applied to a database of cardiac 3D US images of the left ventricle acquired from 9 healthy volunteers and 13 patients treated by Cardiac Resynchronization Therapy (CRT). On healthy cases, uniform strain patterns were observed over all myocardial segments, as physiologically expected. On all CRT patients, theimprovement in synchrony of regional longitudinal strain correlated with CRT clinical outcome as quanti ed by the reduction of end-systolic left ventricular volume at follow-up (6 and 12 months), showing the potential of the proposed algorithm for the assessment of CRT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geoelectrical techniques are widely used to monitor groundwater processes, while surprisingly few studies have considered audio (AMT) and radio (RMT) magnetotellurics for such purposes. In this numerical investigation, we analyze to what extent inversion results based on AMT and RMT monitoring data can be improved by (1) time-lapse difference inversion; (2) incorporation of statistical information about the expected model update (i.e., the model regularization is based on a geostatistical model); (3) using alternative model norms to quantify temporal changes (i.e., approximations of l(1) and Cauchy norms using iteratively reweighted least-squares), (4) constraining model updates to predefined ranges (i.e., using Lagrange Multipliers to only allow either increases or decreases of electrical resistivity with respect to background conditions). To do so, we consider a simple illustrative model and a more realistic test case related to seawater intrusion. The results are encouraging and show significant improvements when using time-lapse difference inversion with non l(2) model norms. Artifacts that may arise when imposing compactness of regions with temporal changes can be suppressed through inequality constraints to yield models without oscillations outside the true region of temporal changes. Based on these results, we recommend approximate l(1)-norm solutions as they can resolve both sharp and smooth interfaces within the same model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given $n$ independent replicates of a jointly distributed pair $(X,Y)\in {\cal R}^d \times {\cal R}$, we wish to select from a fixed sequence of model classes ${\cal F}_1, {\cal F}_2, \ldots$ a deterministic prediction rule $f: {\cal R}^d \to {\cal R}$ whose risk is small. We investigate the possibility of empirically assessingthe {\em complexity} of each model class, that is, the actual difficulty of the estimation problem within each class. The estimated complexities are in turn used to define an adaptive model selection procedure, which is based on complexity penalized empirical risk.The available data are divided into two parts. The first is used to form an empirical cover of each model class, and the second is used to select a candidate rule from each cover based on empirical risk. The covering radii are determined empirically to optimize a tight upper bound on the estimation error. An estimate is chosen from the list of candidates in order to minimize the sum of class complexity and empirical risk. A distinguishing feature of the approach is that the complexity of each model class is assessed empirically, based on the size of its empirical cover.Finite sample performance bounds are established for the estimates, and these bounds are applied to several non-parametric estimation problems. The estimates are shown to achieve a favorable tradeoff between approximation and estimation error, and to perform as well as if the distribution-dependent complexities of the model classes were known beforehand. In addition, it is shown that the estimate can be consistent,and even possess near optimal rates of convergence, when each model class has an infinite VC or pseudo dimension.For regression estimation with squared loss we modify our estimate to achieve a faster rate of convergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical {\sc vc} dimension, empirical {\sc vc} entropy, andmargin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We develop an efficient technique to compute anomalies in supersymmetric theories by combining the so-called nonlocal regularization method and superspace techniques. To illustrate the method we apply it to a four-dimensional toy model with potentially anomalous N=1 supersymmetry and prove explicitly that in this model all the candidate supersymmetry anomalies have vanishing coefficients at the one-loop level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The matching coefficients for the four-quark operators in NRQCD (NRQED) are calculated at one loop using dimensional regularization for ultraviolet and infrared divergences. The matching for the electromagnetic current follows easily from our results. Both the unequal and equal mass cases are considered. The role played by the Coulomb infrared singularities is explained in detail.