971 resultados para refractive error development
Resumo:
Many workers have studied the ocular components which occur in eyes exhibiting differing amounts of central refractive error but few have ever considered the additional information that could be derived from a study of peripheral refraction. Before now, peripheral refraction has either been measured in real eyes or has otherwise been modelled in schematic eyes of varying levels of sophistication. Several differences occur between measured and modelled results which, if accounted for, could give rise to more information regarding the nature of the optical and retinal surfaces and their asymmetries. Measurements of ocular components and peripheral refraction, however, have never been made in the same sample of eyes. In this study, ocular component and peripheral refractive measurements were made in a sample of young near-emmetropic, myopic and hyperopic eyes. The data for each refractive group was averaged. A computer program was written to construct spherical surfaced schematic eyes from this data. More sophisticated eye models were developed making use of linear algebraic ray tracing program. This method allowed rays to be traced through toroidal aspheric surfaces which were translated or rotated with respect to each other. For simplicity, the gradient index optical nature of the crystalline lens was neglected. Various alterations were made in these eye models to reproduce the measured peripheral refractive patterns. Excellent agreement was found between the modelled and measured peripheral refractive values over the central 70o of the visual field. This implied that the additional biometric features incorporated in each eye model were representative of those which were present in the measured eyes. As some of these features are not otherwise obtainable using in vivo techniques, it is proposed that the variation of refraction in the periphery offers a very useful optical method for studying human ocular component dimensions.
Resumo:
The aim of this study was to determine whether an ophthalmophakometric technique could offer a feasible means of investigating ocular component contributions to residual astigmatism in human eyes. Current opinion was gathered on the prevalence, magnitude and source of residual astigmatism. It emerged that a comprehensive evaluation of the astigmatic contributions of the eye's internal ocular surfaces and their respective axial separations (effectivity) had not been carried out to date. An ophthalmophakometric technique was developed to measure astigmatism arising from the internal ocular components. Procedures included the measurement of refractive error (infra-red autorefractometry), anterior corneal surface power (computerised video keratography), axial distances (A-scan ultrasonography) and the powers of the posterior corneal surface in addition to both surfaces of the crystalline lens (multi-meridional still flash ophthalmophakometry). Computing schemes were developed to yield the required biometric data. These included (1) calculation of crystalline lens surface powers in the absence of Purkinje images arising from its anterior surface, (2) application of meridional analysis to derive spherocylindrical surface powers from notional powers calculated along four pre-selected meridians, (3) application of astigmatic decomposition and vergence analysis to calculate contributions to residual astigmatism of ocular components with obliquely related cylinder axes, (4) calculation of the effect of random experimental errors on the calculated ocular component data. A complete set of biometric measurements were taken from both eyes of 66 undergraduate students. Effectivity due to corneal thickness made the smallest cylinder power contribution (up to 0.25DC) to residual astigmatism followed by contributions of the anterior chamber depth (up to 0.50DC) and crystalline lens thickness (up to 1.00DC). In each case astigmatic contributions were predominantly direct. More astigmatism arose from the posterior corneal surface (up to 1.00DC) and both crystalline lens surfaces (up to 2.50DC). The astigmatic contributions of the posterior corneal and lens surfaces were found to be predominantly inverse whilst direct astigmatism arose from the anterior lens surface. Very similar results were found for right versus left eyes and males versus females. Repeatability was assessed on 20 individuals. The ophthalmophakometric method was found to be prone to considerable accumulated experimental errors. However, these errors are random in nature so that group averaged data were found to be reasonably repeatable. A further confirmatory study was carried out on 10 individuals which demonstrated that biometric measurements made with and without cycloplegia did not differ significantly.
Resumo:
This study characterizes the visually evoked magnetic response (VEMR) to pattern onset/offset stimuli, using a single channel BTi magnetometer. The influence of stimulus parameters and recording protocols on the VEMR is studied with inferences drawn about the nature of cortical processing, its origins and optimal recording strategies. Fundamental characteristics are examined, such as the behaviour of successive averaged and unaveraged responses; the effects of environmental shielding; averaging; inter- and intrasubject variability and equipment specificity. The effects of varying check size, field size, contrast and refractive error on latency, amplitude and topographic distribution are also presented. Latency and amplitude trends are consistent with previous VEP findings and known anatomical properties of the visual system. Topographic results are consistent with the activity of sources organised according to the cruciform model of striate cortex. A striate origin for the VEMR is also suggested by the results to quarter, octant and annulus field stimuli. Similarities in the behaviour and origins of the sources contributing to the CIIm and CIIIm onset peaks are presented for a number of stimulus conditions. This would be consistent with differing processing event in the same, or similar neuronal populations. Focal field stimuli produce less predictable responses than full or half fields, attributable to a reduced signal to noise ratio and an increased sensitivity to variations in cortical morphology. Problems with waveform peak identification are encountered for full field stimuli that can only be resolved by the careful choice of stimulus parameters, comparisons with half field responses or with reference to the topographic distribution of each waveform peak. An anatomical study of occipital lobe morphology revealed large inter- and intrasubject variation in calcarine fissure shape and striate cortex distribution. An appreciation of such variability is important for VEMR interpretation, due to the technique's sensitivity to source depth and orientation, and it is used to explain the experimental results obtained.
Resumo:
The Aston Eye Study (AES) was instigated in October 2005 to determine the distribution of refractive error and associated ocular biometry in a sample of UK urban school children. The AES is the first study to compare outcome measures separately in White, South Asian and Black children. Children were selected from two age groups (Year 2 children aged 6/7 years, Year8 children aged 12/13 years of age) using random cluster sampling of schools in Birmingham, West Midlands UK. To date, the AES has examined 598 children (302 Year 2,296 Year 8). Using open-field cycloplegic autorefraction, the overall prevalence of myopia (=-0.50D SER in either eye) determined was 19.6%, with a higher prevalence in older (29.4%) compared to younger (9.9%) children (p<0.001). Using multiple logistic regression models, the risk of myopia was higher in Year 8 South Asian compared to White children and higher in children attending grammar schools relative to comprehensive schools. In addition, the prevalence of uncorrected ametropia was found to be high (Year 8: 12.84%, Year 2: 15.23%), which will be of concern to bodies responsible for the implementation of school vision screening strategies. Biometric data using non-contact partial coherence interferometry revealed a contributory effect of axial length (AL) and central corneal radius (CR) on myopic refraction, resulting in a strong coefficient of determination of the AL/CR ratio on refractive error. Ocular biometric measures did not vary significantly as a function of ethnicity, suggesting a greater miscorrelation of components in susceptible ethnic groups to account for their higher myopia prevalence. Corneal radius was found to be steeper in myopes in both age groups, but was found to flatten with increasing axial length. Due to the inextricable link between myopia and axial elongation, the paradoxical finding of the cornea demands further longitudinal investigation, particularly in relation to myopia onset. Questionnaire analysis revealed a history of myopia in parents and siblings to be significantly associated with myopia in Year 8 children, with a dose-dependent rise in the odds ratio of myopia evident with increasing number of myopic parents. By classifying socioeconomic status (SES) using Index of Multiple Deprivation values, it was found that Year 8 children from moderately deprived backgrounds were more at risk of myopia compared with children located at both extremities of the deprivation spectrum. However, the main effect of SES weakened following multivariate analysis, with South Asian ethnicity and grammar schooling remaining associated with Year 8 myopia after adjustment.
Resumo:
Visual perception is dependent on both light transmission through the eye and neuronal conduction through the visual pathway. Advances in clinical diagnostics and treatment modalities over recent years have increased the opportunities to improve the optical path and retinal image quality. Higher order aberrations and retinal straylight are two major factors that influence light transmission through the eye and ultimately, visual outcome. Recent technological advancements have brought these important factors into the clinical domain, however the potential applications of these tools and considerations regarding interpretation of data are much underestimated. The purpose of this thesis was to validate and optimise wavefront analysers and a new clinical tool for the objective evaluation of intraocular scatter. The application of these methods in a clinical setting involving a range of conditions was also explored. The work was divided into two principal sections: 1. Wavefront Aberrometry: optimisation, validation and clinical application The main findings of this work were: • Observer manipulation of the aberrometer increases variability by a factor of 3. • Ocular misalignment can profoundly affect reliability, notably for off-axis aberrations. • Aberrations measured with wavefront analysers using different principles are not interchangeable, with poor relationships and significant differences between values. • Instrument myopia of around 0.30D is induced when performing wavefront analysis in non-cyclopleged eyes; values can be as high as 3D, being higher as the baseline level of myopia decreases. Associated accommodation changes may result in relevant changes to the aberration profile, particularly with respect to spherical aberration. • Young adult healthy Caucasian eyes have significantly more spherical aberration than Asian eyes when matched for age, gender, axial length and refractive error. Axial length is significantly correlated with most components of the aberration profile. 2. Intraocular light scatter: Evaluation of subjective measures and validation and application of a new objective method utilising clinically derived wavefront patterns. The main findings of this work were: • Subjective measures of clinical straylight are highly repeatable. Three measurements are suggested as the optimum number for increased reliability. • Significant differences in straylight values were found for contact lenses designed for contrast enhancement compared to clear lenses of the same design and material specifications. Specifically, grey/green tints induced significantly higher values of retinal straylight. • Wavefront patterns from a commercial Hartmann-Shack device can be used to obtain objective measures of scatter and are well correlated with subjective straylight values. • Perceived retinal stray light was similar in groups of patients implanted with monofocal and multi focal intraocular lenses. Correlation between objective and subjective measurements of scatter is poor, possibly due to different illumination conditions between the testing procedures, or a neural component which may alter with age. Careful acquisition results in highly reproducible in vivo measures of higher order aberrations; however, data from different devices are not interchangeable which brings the accuracy of measurement into question. Objective measures of intraocular straylight can be derived from clinical aberrometry and may be of great diagnostic and management importance in the future.
Resumo:
The thesis investigates the relationship between the biomechanical properties of the anterior human sclera and cornea in vivo using Schiotz tonometry (ST), rebound tonometry (RBT, iCare) and the Ocular Response Analyser (ORA, Reichert). Significant differences in properties were found to occur between scleral quadrants. Structural correlates for the differences were examined using Partial Coherent Interferometry (IOLMaster, Zeiss), Optical Coherent tomography (Visante OCT), rotating Scheimpflug photography (Pentacam, Oculus) and 3-D Magnetic Resonance Imaging (MRI). Subject groups were employed that allowed investigation of variation pertaining to ethnicity and refractive error. One hundred thirty-five young adult subjects were drawn from three ethnic groups: British-White (BW), British-South-Asian (BSA) and Hong-Kong-Chinese (HKC) comprising non-myopes and myopes. Principal observations: ST demonstrated significant regional variation in scleral resistance a) with lowest levels at quadrant superior-temporal and highest at inferior-nasal; b) with distance from the limbus, anterior locations showing greater resistance. Variations in resistance using RBT were similar to those found with ST; however the predominantly myopic HKC group had a greater overall mean resistance when compared to the BW-BSA group. OCT-derived scleral thickness measurements indicated the sclera to be thinner superiorly than inferiorly. Thickness varied with distance from the corneolimbal junction, with a decline from 1 to 2 mm followed by a successive increase from 3 to 7 mm. ORA data varied with ethnicity and refractive status; whilst axial length (AL) was associated with corneal biometrics for BW-BSA individuals it was associated with IOP in the HKC individuals. Complex interrelationships were found between ORA Additional-Waveform-Parameters and biometric data provided by the Pentacam. OCT indicated ciliary muscle thickness to be greater in myopia and more directly linked to posterior ocular volume (from MRI) than AL. Temporal surface areas (SAs, from MRI) were significantly smaller than nasal SAs in myopic eyes; globe bulbosity (from MRI) was constant across quadrants.
Resumo:
PURPOSE: To validate a new miniaturised, open-field wavefront device which has been developed with the capacity to be attached to an ophthalmic surgical microscope or slit-lamp. SETTING: Solihull Hospital and Aston University, Birmingham, UK DESIGN: Comparative non-interventional study. METHODS: The dynamic range of the Aston Aberrometer was assessed using a calibrated model eye. The validity of the Aston Aberrometer was compared to a conventional desk mounted Shack-Hartmann aberrometer (Topcon KR1W) by measuring the refractive error and higher order aberrations of 75 dilated eyes with both instruments in random order. The Aston Aberrometer measurements were repeated five times to assess intra-session repeatability. Data was converted to vector form for analysis. RESULTS: The Aston Aberrometer had a large dynamic range of at least +21.0 D to -25.0 D. It gave similar measurements to a conventional aberrometer for mean spherical equivalent (mean difference ± 95% confidence interval: 0.02 ± 0.49D; correlation: r=0.995, p<0.001), astigmatic components (J0: 0.02 ± 0.15D; r=0.977, p<0.001; J45: 0.03 ± 0.28; r=0.666, p<0.001) and higher order aberrations RMS (0.02 ± 0.20D; r=0.620, p<0.001). Intraclass correlation coefficient assessments of intra-sessional repeatability for the Aston Aberrometer were excellent (spherical equivalent =1.000, p<0.001; astigmatic components J0 =0.998, p<0.001, J45=0.980, p<0.01; higher order aberrations RMS =0.961, p<0.001). CONCLUSIONS: The Aston Aberrometer gives valid and repeatable measures of refractive error and higher order aberrations over a large range. As it is able to measure continuously, it can provide direct feedback to surgeons during intraocular lens implantations and corneal surgery as to the optical status of the visual system.
Resumo:
PURPOSE: To evaluate factors affecting corneoscleral profile (CSP) using Anterior Segment Optical Coherence Tomography (AS-OCT) in combination with conventional videokeratoscopy. METHODS: OCT data were collected from 204 subjects of mean age 34.9 years (SD: ±15.2 yrs, range 18 to 65) using the Zeiss Visante AS-OCT and Medmont M300 corneal topographer. Measurements of corneal diameter (CD), corneal sagittal height (CS), iris diameter (ID), corneoscleral junction angle (CSJ) and scleral radius (SR) were extracted from multiple OCT images. Horizontal visible iris diameter (HVID) and vertical palpebral aperture (PA) were measured using a slit lamp graticule. Subject body height was also measured. Associations were then sought between CSP variables and age, height, ethnicity, sex and refractive error data collected. Results: Significant correlations were found between age and ocular topography variables of HVID, PA, CSJ, SR and ID (P<0.0001), while height correlated with HVID, CD and ID, and power vector terms only with vertical plane keratometry, CD and CS. Significant differences were noted between ethnicities with respect to CD (P=0.0046), horizontal and vertical CS (P=0.0068 and P=0.0095), and also horizontal ID (P=0.0010), while the same variables, with the exception of vertical CS, also varied with sex; horizontal CD (P=0.0018), horizontal CS (P=0.0018) and ID (P=0.0012). Age accounted for up to 36% of the variance in CSP variables. Conclusion: Age is the main factor influencing corneoscleral topography; consequently, this should be taken into consideration in contact lens design, in the optimization of surgical procedures involving the cornea and sclera and in IOL selection.
Resumo:
Aim: To evaluate the performance of an aspheric diffractive multifocal acrylic intraocular lens (IOL), ZMB00 1-Piece Tecnis. Setting: Five sites across Europe. Methods: Fifty-two patients with cataracts (average age 68.5±10.5 years, 35 female) were bilaterally implanted with the aspheric diffractive multifocal IOL after completing a questionnaire regarding their optical visual symptoms, use of visual correction and their visual satisfaction. The questionnaire was completed again 4-6 months after surgery along with measures of uncorrected and best-corrected distance and near visual acuity, under photopic and mesopic lighting, reading ability, defocus curve testing and ocular examination for adverse events. Results: The residual refractive error was 0.01±0.47D with 56% of eyes within ±0.25D and 97% within ±1.0D. Uncorrected visual acuity was 0.02±0.10logMAR at distance and 0.15±0.30 logMAR at near, only reducing to 0.07±0.10logMAR at distance and 0.21±0.25logMAR at near in mesopic conditions.The defocus curve showed a near addition between 2.5-3.0 D allowing a reading acuity of 0.08±0.13 logMAR, with a range of clear vision <0.3 logMAR of ∼4.0 D. The average reading speed was 121.4±30.8 words per minute. Spectacle independence was 100% for distance and 88% for near, with high levels of satisfaction reported. Overall rating of vision without glasses could be explained (r=0.760) by preoperative best-corrected distance acuity, postoperative reading acuity and postoperative uncorrected distance acuity in photopic conditions (p<0.001). Only two minor adverse events occurred. Conclusions: The ZMB00 1-Piece Tecnis multifocal IOL provides a good visual outcome at distance and near with minimal adverse effects.
Resumo:
Purpose: To compare vision-related quality-of-life measures between children wearing orthokeratology (OK) contact lenses and distance single-vision (SV) spectacles. Methods: Subjects 6 to 12 years of age and with myopia of -0.75 to -4.00 diopters and astigmatism less than or equal to 1.00 diopters were prospectively assigned OK contact lens or SV spectacle correction. A pediatric refractive error profile questionnaire was administered at 12- and 24-month intervals to evaluate children's perceptions in terms of overall vision, near vision, far distance vision, symptoms, appearance, satisfaction, activities, academic performance, handling, and peer perceptions. The mean score of all items was calculated as the overall score. Additionally, parents/guardians were asked to rate their child's mode of visual correction and their intention to continue treatment after study completion. Results: Thirty-one children were fitted with OK contact lenses and 30 with SV spectacles. Children wearing OK contact lenses rated overall vision, far distance vision, symptoms, appearance, satisfaction, activities, academic performance, handling, peer perceptions, and the overall score significantly better than children wearing SV spectacles (all P<0.05). Near vision and handling were, respectively, rated better (P<0.001) and similar (P=0.44) for SV spectacles in comparison to OK contact lenses. No significant differences were found between 12 and 24 months for any of the subjective ratings assessed (all P>0.05). Parents/guardians of children wearing OK contact lenses rated visual correction method and intention to continue treatment higher than parents of children wearing SV spectacles (P=0.01). Conclusion: The results indicate that the significant improvement in vision-related quality of life and acceptability with OK contact lenses is an incentive to engage in its use for the control of myopia in children.
Resumo:
As technology and medical devices improve, there is much interest in when and how astigmatism should be corrected with refractive surgery. Astigmatism can be corrected by most forms of refractive surgery, such as using excimer lasers algorithms to ablate the cornea to compensate for the magnitude of refractive error in different meridians. Correction of astigmatism at the time of cataract surgery is well developed and can be achieved through incision placement, relaxing incisions and toric intraocular lens (IOL) implantation. This was less of an issue in the past when there was a lower expectation to be spectacle independent after cataract surgery, in which case the residual refractive error, including astigmatism, could be compensated for with spectacle lenses. The issue of whether presurgical astigmatism should be corrected can be considered separately depending on whether a patient has residual accommodation, and the type of refractive surgery under consideration. We have previously reported on the visual impact of full correction of astigmatism, rather than just correcting the mean spherical equivalent. Correction of astigmatism as low as 1.00 dioptres significantly improves objective and subjective measures of functional vision in prepresbyopes at distance and near.
Resumo:
OBJECTIVE: To assess refractive and biometric changes 1 week after discontinuation of lens wear in subjects who had been wearing orthokeratology (OK) contact lenses for 2 years. METHODS: Twenty-nine subjects aged 6 to 12 years and with myopia of -0.75 to -4.00 diopters (D) and astigmatism of ≤1.00 D participated in the study. Measurements of axial length and anterior chamber depth (Zeiss IOLMaster), corneal power and shape, and cycloplegic refraction were taken 1 week after discontinuation and compared with those at baseline and after 24 months of lens wear. RESULTS: A hyperopic shift was found at 24 months relative to baseline in spherical equivalent refractive error (+1.86±1.01 D), followed by a myopic shift at 1 week relative to 24 months (-1.93±0.92 D) (both P<0.001). Longer axial lengths were found at 24 months and 1 week in comparison to baseline (0.47±0.18 and 0.51±0.18 mm, respectively) (both P<0.001). The increase in axial length at 1 week relative to 24 months was statistically significant (0.04±0.06 mm; P=0.006). Anterior chamber depth did not change significantly over time (P=0.31). Significant differences were found between 24 months and 1 week relative to baseline and between 1-week and 24-month visits in mean corneal power (-1.68±0.80, -0.44±0.32, and 1.23±0.70 D, respectively) (all P≤0.001). Refractive change at 1 week in comparison to 24 months strongly correlated with changes in corneal power (r=-0.88; P<0.001) but not with axial length changes (r=-0.09; P=0.66). Corneal shape changed significantly between the baseline and 1-week visits (0.15±0.10 D; P<0.001). Corneal shape changed from a prolate to a more oblate corneal shape at the 24-month and 1-week visits in comparison to baseline (both P≤0.02) but did not change significantly between 24 months and 1 week (P=0.06). CONCLUSIONS: The effects of long-term OK on ocular biometry and refraction are still present after 1-week discontinuation of lens wear. Refractive change after discontinuation of long-term OK is primarily attributed to the recovery of corneal shape and not to an increase in the axial length.
Resumo:
A clinical evaluation of the Shin-Nippon SRW-5000 (Japan), a newly released commercial autorefractor, was undertaken to assess its repeatability and validity compared to subjective refraction. Measurements of refractive error were performed on 200 eyes of 100 subjects (aged 24.4±8.0 years) subjectively (non-cycloplegic) by one optometrist and objectively with the SRW-5000 autorefractor by a second. Repeatability was assessed by examining the differences between the seven autorefractor readings taken from each eye and by re-measuring the objective prescription of 50 eyes at a subsequent session. Although the SRW-5000 read slightly more plus than subjective refraction (mean spherical equivalent +0.16±0.44D), it was found to be highly valid (accurate) compared to subjective refraction and repeatable over the prescription range of +6.50 to -15.00D examined. The Shin-Nippon SRW-5000 autorefractor is therefore a valuable complement to subjective refraction and as it offers the advantage of a binocular open field-of-view, has a great potential benefit for accommodation research studies. Copyright © 2001 The College of Optometrists.
Resumo:
PURPOSE. The purpose of this study was to evaluate the potential of the portable Grand Seiko FR-5000 autorefractor to allow objective, continuous, open-field measurement of accommodation and pupil size for the investigation of the visual response to real-world environments and changes in the optical components of the eye. METHODS. The FR-5000 projects a pair of infrared horizontal and vertical lines on either side of fixation, analyzing the separation of the bars in the reflected image. The measurement bars were turned on permanently and the video output of the FR-5000 fed into a PC for real-time analysis. The calibration between infrared bar separation and the refractive error was assessed over a range of 10.0 D with a model eye. Tolerance to longitudinal instrument head shift was investigated over a ±15 mm range and to eye alignment away from the visual axis over eccentricities up to 25.0°. The minimum pupil size for measurement was determined with a model eye. RESULTS. The separation of the measurement bars changed linearly (r = 0.99), allowing continuous online analysis of the refractive state at 60 Hz temporal and approximately 0.01 D system resolution with pupils >2 mm. The pupil edge could be analyzed on the diagonal axes at the same rate with a system resolution of approximately 0.05 mm. The measurement of accommodation and pupil size were affected by eccentricity of viewing and instrument focusing inaccuracies. CONCLUSIONS. The small size of the instrument together with its resolution and temporal properties and ability to measure through a 2 mm pupil make it useful for the measurement of dynamic accommodation and pupil responses in confined environments, although good eye alignment is important. Copyright © 2006 American Academy of Optometry.
Resumo:
The studies presented in this thesis were carried out because of a lack of previous research with respect to (a) the habits and attitudes towards retinoscopy and (b) the relative accuracy of dedicated retinoscopes compared to combined types in which changing the bulb allows use in spot or streak mode. An online British survey received responses from 298 optometrists. Decision tree analyses revealed that optometrists working in multiple practices tended to rely less on retinoscopy than those in the independent sector. Only half of the respondents used dynamic retinoscopy. The majority, however, agreed that retinoscopy was an important test. The University attended also influenced the type of retinoscope used and the use of autorefractors. Combined retinoscopes were used most by the more recently qualified optometrists and few agreed that combined retinoscopes were less accurate. A trial indicated that combined and dedicated retinoscopes were equally accurate. Here, 4 optometrists (2 using spot and 2 using streak retinoscopes) tested one eye of 6 patients using combined and dedicated retinoscopes. This trial also demonstrated the utility of the relatively unknown ’15 degrees of freedom’ rule that exploits replication in factorial ANOVA designs to achieve sufficient statistical power when recruitment is limited. An opportunistic international survey explored the use of retinoscopy by 468 practitioners (134 ophthalmologists, 334 optometrists) attending contact related courses. Decision tree analyses found (a) no differences in the habits of optometrists and ophthalmologists, (b) differences in the reliance on retinoscopy and use of dynamic techniques across the participating countries and (c) some evidence that younger practitioners were using static and dynamic retinoscopy least often. In conclusion, this study has revealed infrequent use of static and dynamic retinoscopy by some optometrists, which may be the only means of determining refractive error and evaluating accommodation in patients with communication difficulties.