990 resultados para reduced equation
Resumo:
Objective Theoretical models of post-traumatic growth (PTG) have been derived in the general trauma literature to describe the post-trauma experience that facilitates the perception of positive life changes. To develop a statistical model identifying factors that are associated with PTG, structural equation modelling (SEM) was used in the current study to assess the relationships between perception of diagnosis severity, rumination, social support, distress, and PTG. Method A statistical model of PTG was tested in a sample of participants diagnosed with a variety of cancers (N=313). Results An initial principal components analysis of the measure used to assess rumination revealed three components: intrusive rumination, deliberate rumination of benefits, and life purpose rumination. SEM results indicated that the model fit the data well and that 30% of the variance in PTG was explained by the variables. Trauma severity was directly related to distress, but not to PTG. Deliberately ruminating on benefits and social support were directly related to PTG. Life purpose rumination and intrusive rumination were associated with distress. Conclusions The model showed that in addition to having unique correlating factors, distress was not related to PTG, thereby providing support for the notion that these are discrete constructs in the post-diagnosis experience. The statistical model provides support that post-diagnosis experience is simultaneously shaped by positive and negative life changes and that one or the other outcome may be prevalent or may occur concurrently. As such, an implication for practice is the need for supportive care that is holistic in nature.
Resumo:
Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.
Resumo:
Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.
Resumo:
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis. Keywords: The variable-order Galilei invariant advection diffusion equation with a nonlinear source term; The variable-order Riemann–Liouville fractional partial derivative; Stability; Convergence; Numerical scheme improving temporal accuracy
Analytical Solution for the Time-Fractional Telegraph Equation by the Method of Separating Variables